Добавить в цитаты Настройки чтения

Страница 39 из 40



Вечером того же дня бесконечная вереница автобусов с грохотом подъезжает к стойке регистрации. Их бесконечно много, и, что еще хуже, каждый заполнен бесконечным множеством ворчащих людей, требующих, чтобы отель соответствовал своему девизу: «В отеле Гильберта всегда есть свободные номера».

Менеджер раньше уже сталкивался с такой проблемой и запросто решает ее.

Сначала он проводит трюк удвоения. Это позволяет заселить новых постояльцев в четные номера и освободить все нечетные — хорошее начало, потому что теперь он имеет бесконечное число свободных номеров.

Но достаточно ли этого? Хватит ли нечетных номеров для размещения орд новых постояльцев? Кажется маловероятным, поскольку есть нечто вроде квадратной бесконечности людей, скандалящих из-за этих номеров. (Почему квадратной? Потому что каждый из бесконечного числа автобусов привез бесконечное число пассажиров. Общее количество людей составляет бесконечность, умноженную на бесконечность, чтобы это ни значило).

Вот где логика при работе с бесконечностью становится очень странной.

Чтобы понять, как менеджер собирается решать последнюю задачу, следует визуализировать всех людей, которых он должен поселить.

Конечно, мы не можем показать здесь буквально всех, так как в этом случае диаграмма должна быть бесконечной в обоих направлениях. Но окончательный вариант картинки будет соответствующим. Дело в том, что любой конкретный пассажир автобуса (скажем, ваша тетя Инесс из Луисвилля) обязательно появится где-то на диаграмме, когда мы включим в нее достаточное количество строк и столбцов. В этом смысле каждый пассажир каждого автобуса учтен. Вы называете его имя, и он (или она) обязательно отобразится на некотором конечном количестве шагов к востоку и югу от северо-западного угла картинки.

Задача менеджера — на основании этой диаграммы выработать систему. Он должен построить схему распределения номеров между постояльцами таким образом, чтобы каждый получил свой номер после того, как будет заселено конечное число других людей.

К сожалению, предыдущий менеджер не понял этого, и начался хаос. Когда приезжала очередная колонна автобусов, он так волновался, пытаясь быстро расселить пассажиров первого автобуса, что у него не оставалось времени на яростно кричащих пассажиров других автобусов. На диаграмме ниже проиллюстрирована эта недальновидная стратегия, путь которой всегда соответствовал бы пути на восток вдоль строки 1.

Однако новый менеджер все взял под контроль. Вместо движения вдоль первой строки (обслуживая только первый автобус) он двигался из угла по зигзагообразной схеме, как показано ниже.

Он начинает с первой пассажирки автобуса с номером 1 и дает ей первую пустую комнату. Второй и третий свободные номера займут второй пассажир из первого автобуса и первый пассажир из второго автобуса. Оба находятся на второй диагонали от угла диаграммы. Заселив их, менеджер переходит к третьей диагонали и раздает набор ключей от номеров первому пассажиру из третьего автобуса, второму пассажиру из второго автобуса и третьему пассажиру из первого автобуса.

Надеюсь, тактика менеджера — двигаться от одной диагонали у другой — достаточно очевидна. Нетрудно догадаться, что очередь до любого конкретного человека дойдет за конечное число шагов.

Итак, в отеле Гильберта действительно всегда есть свободные места.

Доказательство, которое я только что представил, — известный аргумент из теории бесконечных множеств. Кантор использовал его, чтобы доказать, что положительных дробей ровно столько (соотношений p/q, где p и q — положительные целые числа), сколько и натуральных чисел (1, 2, 3, 4…). Это гораздо более сильное утверждение, чем то, что оба множества бесконечны. Оно говорит о том, что они бесконечны точно в той степени, в какой между ними может быть установлено взаимно-однозначное соответствие.

Вы можете рассматривать это соответствие как систему напарников, в которой каждое натуральное число состоит в паре с некоей положительной дробью, и наоборот. Кажется, что наличие такой системы противоречит здравому смыслу. Это своего рода софистика, приведшая Пуанкаре в ужас. Ибо она предполагает, что мы могли бы сделать исчерпывающий перечень всех положительных дробей, хотя самой маленькой дроби не существует!

И все же есть такой список. Мы его уже нашли. Дробь p/q, в которой пассажиру p соответствует автобус q, а представленное выше доказательство показывает, что каждая из этих дробей может составить пару с определенным натуральным числом 1, 2, 3, …, представляющим собой номер комнаты пассажира в отеле Гильберта.

Позже Кантор также доказал, что взаимно однозначного соответствия между этими парами быть не может. Поскольку множество действительных чисел, лежащих между 0 и 1, неисчислимо и не может быть поставлено в однозначное соответствие с натуральными числами. Для гостиничного бизнеса это означает, что, если все вещественные числа появятся у стойки администратора и начнут звонить в колокольчик, для них не хватит свободных номеров даже в отеле Гильберта.

Докажем это утверждение от противного. Допустим, каждому действительному числу можно дать собственную комнату. Тогда реестр жильцов, которые определены десятичными дробями, и список номеров комнат будут выглядеть примерно так:

Номер 1: 0,6708112345…

Номер 2: 0,1918676053…



Номер 3: 0,4372854675…

Номер 4: 0,2845635480…

Помните, список должен быть полным. Каждое действительное число между 0 и 1 должно появиться в каком-то конечном месте реестра.

Кантор показал, что в подобном перечне отсутствует много чисел. Вот это и есть противоречие. Например, чтобы построить число, которое нигде не появляется в представленном выше списке, спуститесь по диагонали и составьте новое число из подчеркнутых цифр:

Номер 1: 0,6708112345…

Номер 2: 0,1918676053…

Номер 3: 0,4372854675…

Номер 4: 0,2845635480…

Получилась десятичная дробь 0,6975…

Но мы еще не закончили. Следующий шаг — возьмите эту десятичную дробь и измените все ее цифры, заменяя каждую любой другой от 1 до 8[184]. Например, мы могли бы изменить 6 на 3, 9 на 2, 7 на 5 и т. д.

Эта новая десятичная дробь 0,325… является убийцей. Конечно, это не первый номер, так как она имеет другую первую цифру, чем число, находящееся в этом номере. И не второй номер, поскольку у него другая вторая цифра. В общем, она отличается от n-ого числа с n—м десятичным разрядом. Поэтому нигде не фигурирует в списке!

Вывод таков: отель Гильберта не может разместить все действительные числа. Их просто слишком много для этого — бесконечность, выходящая за пределы бесконечности[185].

И с этой унизительной мыслью мы подходим к концу книги, которая началась со сцены в другом воображаемом отеле. Помните? Персонаж «Улицы Сезам» по имени Хамфри, работающий в обеденное время в отеле «Мохнатые лапы», принял заказ у голодных пингвинов: «Рыбка, рыбка, рыбка, рыбка, рыбка, рыбка», и вскоре узнал о силе чисел.

Это было долгое путешествие от рыбок к бесконечности. Спасибо, что оставались со мной.

От автора

Многие друзья и коллеги помогали мне улучшить эту книгу, щедро предлагая мудрые советы по математике, стилистике, истории и другим вопросам. Благодарю Дага Арнольда, Шелдона Акслера, Лэрри Брадена, Дэна Каллахана, Боба Коннелли, Тома Гиловича, Джорджа Харта, Ви Харт, Диану Хопкинс, Герберта Хуи, Синди Клаусс, Майкла Льюиса, Михаэля Мобуссина, Барри Мазура, Эри Ногучи, Чарли Пескина, Стива Пинкера, Рави Рамакришну, Дэвида Ранда, Ричарда Ранда, Питера Ренца, Дугласа Роджерса, Джона Смайли, Гранта Виджинса, Стивена Янга и Карла Циммера.

184

При доказательстве неисчислимости вещественных чисел я прибегнул к крошечной хитрости, когда потребовал заменить диагональные цифры на цифры от 1 до 8. В этом не было необходимости. Но я хотел избежать использования цифр от 0 до 9, чтобы обойти некую неопределенность, вызванную тем, что у некоторых действительных чисел есть два десятичных представления. Например, 0,200000… равно 0,199999… Таким образом, если бы мы не исключили использование 0 и 9 при замене цифры, этот придуманный диагональный аргумент мог бы невольно подготовить ряд, который уже есть в списке (и это разрушило бы наше доказательство). Но при выполнении моего запрета на цифры от 0 до 9 такого казуса не произойдет.

185

Чтобы ознакомиться с более строгой математически, но все же довольно понятной дискуссией о бесконечности (и многих других идеях, обсуждаемых в этой книге), см. J. C. Stillwell, Yearning for the Impossible (A K Peters, 2006). Читатели, которые захотят получить более глубокие знания о бесконечности, вероятно, с удовольствием посетят блог Терри Тао о самоопределяющихся объектах, см. http://terrytao.wordpress.com/2009/11/05/the-no-self-defeating-object-argument/.

В очень доступной форме он представляет и освещает массу фундаментальных рассуждений о бесконечности, которые возникают в теории множеств, философии, физике, информатике, теории игр и логике. Для обзора основополагающих вопросов, вызванных этими идеями, см. также J. C. Stillwell, Roads to Infinity (A K Peters, 2010).