Страница 11 из 40
Даже если вы все-таки найдете точное решение, не стоит самоуспокаиваться. Данную задачу можно решать более простыми способами. Это единственное место, где математика дает простор творчеству. Например, помимо метода дядюшки Ирва (с помощью обыкновенных дробей, приведенных к общему знаменателю), есть более забавный маршрут, приводящий к тому же результату. Несколько лет спустя, когда я попытался определить, почему эта задача настолько запутанна, до меня дошло, что в первую очередь из-за разных скоростей кранов. Необходимость следить, каков вклад каждого крана в наполнение ванны, вызывает напряжение. Особенно если вы можете представить такую картину: горячая и холодная вода плещется из кранов, перемешиваясь в ванне.
Так что давайте не смешивать два вида воды, по крайней мере в нашей голове. Вместо одной ванны представим себе две разные конвейерные ленты с движущимися ваннами с отдельными кранами с горячей и холодной водой.
Из каждого крана наполняется одна ванна — перемешивание не допускается. И как только одна ванна наполняется, она движется далее по конвейеру, уступая место следующей.
Теперь все становится понятным. За один час кран с горячей водой наполняет одну ванну, за это же время кран с холодной водой заполняет две ванны (так как на одну требуется полчаса). Это составляет три ванны в час или одну ванну каждые двадцать минут. Эврика!
Так почему же столько людей, в том числе и я, грубо ошибаются, отвечая «45 минут»? Почему так заманчиво разделить пополам сумму тридцати и шестидесяти минут? Я не уверен, но, кажется, из-за ошибочного понимания условия задачи. Может быть, задача с заполнением ванны в сознании наложилась на другие задачи, где нахождение разности имело бы смысл. Моя жена объяснила мне это с помощью аналогии: «Представь себе, что ты помогаешь пожилой даме перейти улицу. Без твоей помощи это займет у нее 60 секунд, ты бы перебежал дорогу за тридцать. Сколько времени вы будете ее переходить, если ты будешь держать даму под руку?» Теперь ясна логика людей, которые говорят о сорока пяти секундах, потому что, когда пожилая дама цепляется за ваш локоть, она замедляет ваше движение, а вы ускоряете ее.
Отличие от задачи с ванной здесь в том, что и вы, и пожилая дама воздействуете на скорость движения друг друга, чего не происходит с кранами. Они независимы. По-видимому, наше подсознание не распознает это различие, по крайней мере, когда мы жадно хватаемся за неправильный вывод.
Нет худа без добра. Даже неправильные ответы могут быть полезны — если вы осознаете, что они неправильные. Они разоблачают ошибочные аналогии и другие погрешности мышления и помогают облечь суть проблемы в более понятную форму.
Классические занимательные арифметические задачи специально сформулированы таким образом, чтобы так же ловко, как это делает фокусник, обмануть свою жертву, то есть вас. Само условие задачи содержит подвох. Если вы ответите инстинктивно, то, вероятно, попадетесь на эту удочку.
Вот пример такого типа задачи. Предположим, трое мужчин могут покрасить три забора за три часа. Сколько времени потребуется, чтобы один человек покрасил один забор?
Очень заманчиво ляпнуть: «Один час». Сама формулировка подталкивает вас к этому. Барабанный ритм первого предложения — трое мужчин, три забора, три часа — настраивает ваше внимание на определенную волну, поэтому когда в вопросе в таком же ритме повторяется: один человек, один забор, то ответу «один час» трудно сопротивляться. Эти параллельные конструкции психологически настраивают на ответ, который правилен лингвистически, но математически неверен.
Правильный ответ: три часа.
Если вы визуализируете задачу, мысленно представив троих мужчин, три забора и уже покрашенные через три часа заборы, то ответ становится очевидным. Чтобы через три часа покрасить все три забора, каждый человек должен красить свой забор в течение трех часов.
Отвлекаясь от рассуждений, скажу, что такие задачи считаются наиболее ценными среди текстовых задач. Они тренируют наше внимание, заставляя остановиться и посмотреть на задачу с совершенно неожиданной стороны.
Возможно, еще важнее то, что текстовые задачи учат нас думать не только о количестве, но и о соотношениях между числами, выражающими количества. Например, как скорость вытекания воды из кранов влияет на время, необходимое для заполнения ванны. И это следующий важный шаг в математическом образовании человека. Понятно, что для многих это сложно, так как соотношения — нечто более абстрактное, чем просто числа. Но они также представляют собой более мощный инструмент познания окружающего мира, поскольку отражают его внутреннюю логику. Причина и следствие, спрос и предложение, вход и выход, воздействие и отдача — все они связаны между собой парами чисел и соотношениями между ними. Текстовые задачи вырабатывают у нас образ мышления, который интенсивно использует различные соотношения.
Тем не менее Кит Девлин в своем эссе «Проблемы с текстовыми задачами» (The problem with word problems) высказывает о них интересные критические замечания. С его точки зрения, проблема в том, что при решении таких задач считается, что вы понимаете правила игры и соглашаетесь с ними, хотя часто они искусственные, а иногда и вообще нелепые. Например, в нашей задаче о трех мужчинах и трех заборах, которые они красят в течение трех часов, подразумевается, что, во-первых, все трое красят с одинаковой скоростью и, во-вторых, красят непрерывно, не снижая и не повышая темпа работы.
Оба допущения нереальны. Предполагается, что вы игнорируете все это, иначе задача оказалась бы слишком сложной и у вас не было бы достаточно данных для ее решения. Вы должны были бы точно знать, сколько раз каждый маляр замедлял работу и насколько он устал на третьем часу, как часто останавливался, чтобы перекусить, и т. п.
Преподаватели математики должны быть готовы к тому, что текстовые задачи заставляют нас делать упрощающие предположения. Этот ценный навык называется математическим моделированием. Ученые используют его всегда, когда применяют математику к явлениям реального мира. Но они, в отличие от авторов большинства текстовых задач, как правило, заранее сообщают о своих допущениях.
Итак, спасибо дядюшке Ирву за первый урок. Незабываемый? Да. Унизительный? Да, но — в хорошем смысле.
10. Игра с квадратами
Формула для вычисления корней квадратного уравнения — это Родни Дэнджерфилд[47] алгебры. И, будучи одной из формул всех времен и народов, она не заслужила никакого уважения. Даже профессионалы не особо ее жалуют. Когда математиков и физиков просят составить десятку самых красивых или важных уравнений[48] всех времен, квадратное уравнение никогда не проходит отбор. Да, конечно, все восторгаются 1 + 1 = 2, E = mc2 и элегантной маленькой теоремой Пифагора, которая важничает просто потому, что она вот такая: a2 + b2 = c2. Но квадратное уравнение? Конечно же нет.
По общему признанию, формула для вычисления корней квадратного уравнения некрасива. Некоторые студенты начинают робко выяснять у нее результат, произнося как ритуальное заклинание: «х равен минус b плюс-минус квадратный корень из b квадрат минус четыре ac, деленное на два a». Другие сделаны из более прочного материала и смотрят формуле прямо в лицо, бесстрашно сопротивляясь пугающей смеси из букв и символов:
И только когда вы осознаете, на что способна эта формула, вы начинаете ценить ее внутреннюю красоту. Надеюсь, эта глава поможет вам совладать с кажущимся сумбуром символов, а также позволит понять, что означает уравнение и откуда оно берется.
47
Родни Дэнджерфилд (1921–2004) — популярный американский комедийный актер. Сниматься стал поздно. Известен благодаря фильмам «Гольф-клуб» (1980), «Легкие деньги» (1983) и «Снова в школу» (1986). Прим. перев.
48
Книги о великих уравнениях: M. Guillen, Five Equations That Changed the World (Hyperion, 1995); G. Farmelo, It Must Be Beautiful (Granta, 2002) и R. P. Crease, The Great Equations (W.W. Norton and Company, 2009).