Добавить в цитаты Настройки чтения

Страница 20 из 37



КОТОРЫй ИЗ ДВУХ!

Основным описанием зависимости между энергией, частотой и температурой служил тогда так называемый закон Вина, устанавливающий экспоненциальную зависимость от некой величины, пропорциональной частоте, деленной на температуру. Но чем больше накапливалось экспериментальных данных, тем яснее становилось, что закон излучения Вина, хотя и вполне удовлетворительный для коротких волн и низких температур, не согласуется с экспериментальными данными для длинных волн и высоких температур.В то же время хорошее согласование с экспериментом именно в области длинных волн и высоких температур давал другой закон, так называемый закон Релея — Джинса, устанавливающий простую пропорциональную зависимость между количеством! энергии, приходящейся на данный частотный интервал, и температурой. Понятно, что два различных закона для одного и того же явления — это гораздо хуже, чем ни одного.Размышляя над проблемой излучения черного тела, М. Планк сразу понял, что исследовать надо равновесное состояние. А равновесное состояние достигается тогда, когда энтропия максимальна. Чтобы определить максимум, нужно дважды продифференцировать соответствующую зависимость. М. Планк и проделал это. Но поскольку существовало два закона, он опять-таки получил две различные формулы. Казалось бы, дело ничуть не двинулось вперед. Однако вот тут-то и проявилось то, что можно назвать гениальной интуицией ученого. Он просто взял и сложил обе формулы. Известный физик М. Борн писал по этому поводу:«Это сложение оказалось одной из наиболее важных и значительных интерполяций за всю историю физики; так обнаружилась почти сверхъестественная физическая интуиция Планка. Пятью годами позже все это стало заметно понятнее и интереснее, благодаря интерпретации Эйнштейна, данной в той же статье, в которой он связал закон Планка с фотоэффектом. Эйнштейн заметил, что величина, обратная второй производной энтропии по энергии, имеет простой физический смысл — это среднее квадратичное флюктуации энергии, а хорошо известно, что средние квадратичные флюктуации обладают свойством аддитивности, если они вызываются независимыми причинами. Этот аргумент был использован Эйнштейном для указания на независимое существование световых квантов».Свою формулу для излучений М. Планк доложил в Берлинском физическом обществе 19 октября 1900 года. Он рассказывал, что на следующее утро один из его коллег пришел к нему и сообщил, что в ночь после заседания он сравнил формулу Планка со своими измерениями и обнаружил всюду удовлетворительные результаты. Другие ученые, также занимавшиеся экспериментальными исследованиями излучения черного тела, О. Люммер и Н. Прингсгейм, вначале считали, что отклонения были, но вскоре обнаружили, что это вызвано ошибкой в расчете. Впоследствии было проведено много опытов для проверки формулы Планка, и их результаты доказали, что по мере улучшения методов измерения достигается все более полное совпадение теоретических и экспериментальных данных.

ТАИНСТВЕННАЯ КОНСТАНТА



Однако путь к получению формулы излучений был не так прост, как это кажется на первый взгляд. Вспомним, что М. Планк произвел свое знаменитое сложение формул для производных, точнее, для второй производной, от энтропии по энергии. Для того чтобы перейти от производных к самим величинам, необходимо выполнить операцию интегрирования. Вот и получилось, что интегралы расходятся, то есть дают бесконечные значения.Единственная возможность получить результат состояла в том, чтобы сделать предположение, что энергия изменяется не непрерывно, а скачками. Величина каждого такого скачка пропорциональна частоте излучения и некоторой постоянной величине.М. Планк вычислил эту величину и доложил о своих результатах в Немецком физическом обществе 14 декабря 1900 года. Таким образом, кроме хорошо известной постоянной Больцмана, появилась еще одна физическая константа, известная сегодня как постоянная Планка. М. Планк совершенно ясно сознавал важность своего открытия. Его сын Эрвин рассказывал: «Это было в 1900 году, когда Планк на прогулке в Грюневальде около Берлина сказал мне:— Сегодня я сделал столь же важное открытие, как и открытие Ньютона».Конечно, М. Планк никогда не говорил ничего подобного публично.Опять-таки вначале открытие М. Планка не вызвало особой сенсации. Ученые считали, что постоянная Планка, или, как ее иначе можно назвать, квант действия, должна лишь частично дополнить существующую классическую теорию. Сам М. Планк сообщал, как упорно пытался он ввести квант действия в систему классической теории, но безуспешно: «Эта величина (постоянная Планка) оказалась строптивой и сопротивлялась всем подобного рода попыткам. До тех пор, пока ее можно считать бесконечно малой, то есть при больших энергиях и продолжительных периодах, все было в полном порядке. Но в общем случае то там, то здесь возникала зияющая трещина, которая становилась тем более заметной, чем более быстрые колебания рассматривались. Провал всех попыток перекинуть мост через эту пропасть не оставил вскоре никаких сомнений в том, что квант действия играет фундаментальную роль в атомной физике и что с его появлением началась новая эпоха в физической науке, ибо в нем заложено нечто, до того времени неслыханное, что призвано радикально преобразить наше физическое мышление, построенное на понятии непрерывности всех причинных связей с. того времени, как Лейбниц и Ньютон создали исчисление бесконечно малых».В дальнейшем А. Эйнштейн показал, что кванты являются особенностью Не только теплового, но любого излучения, и привел экспериментальные и теоретические соображения в пользу корпускулярной интерпретации света.

ПОСТОЯННАЯ ПЛАНКА И ИНФОРМАЦИЯ

Покажем теперь, что все это длинное отступление имеет самое прямое отношение к информации. Для этого нужно вернуться назад, к материалу второй главы, и вспомнить, что в основу всех рассуждений, приведших нас сейчас к открытию М. Планка, было положено понятие статистического веса. Статистический вес, напомним, — это количество способов, которым может быть реализовано данное состояние данной физической системы. Применительно к бильярду мы понимали под состоянием лишь чисто геометрическое положение шаров в пределах правой или левой половины бильярдного стола. Затем мы оговорились, что, для того чтобы понятие состояния приобрело физический смысл, необходимо учитывать не только положение шаров (молекул), но и значение их энергии.И вот тут-то возникает трудность, о которой мы сознательно умолчали в предыдущих главах.Рассмотрим, например, состояние, характеризуемое тем, что в пределах левой половины бильярда расположены три шара и их суммарная энергия равна, скажем, 10 джоулям. Сколькими различными способами может быть реализовано такое состояние? Во второй главе было показано, что состояние «3 шара слева» может быть реализовано 560 различными способами. Но к этому следует добавить еще число способов, которыми можно разделить 10 джоулей между тремя шарами. Один такой способ, например, может быть: 3, 3,5 и 3,5. Другой способ: 3, 3,45 и 3,55. Наконец, еще способ: 3, 3,455 и 3,545 и т. д. Рассматривать энергию как непрерывно изменяющуюся величину — это все равно что считать возможными любые ее значения. Применительно к только что рассмотренному примеру это значит, что при подсчете числа способов необходимо учитывать числа с любым количеством десятичных цифр после запятой. Ясно, что полное количество способов оказывается при этом бесконечно большим. Энтропия, представляющая собой логарифм числа способов, также оказывается в этом случае бесконечно большой.Но мы знаем, что энтропия физической системы конечных размеров есть конечная величина, которая может быть выражена через другие физические величины, например, через энергию и температуру. Единственная возможность преодолеть подобное противоречие и сделать статистический вес конечной величиной — это предположить, что энергия изменяется не непрерывно, а скачками. То есть сделать то же самое, что сделал в свое время М. Планк.Пока еще мы считаем, что информация, содержащаяся в физической системе, представляет собой разность между максимально возможным и истинно существующим значениями энтропии. Следовательно, для информации должно быть справедливо все только что высказанное. Информация может переноситься лишь величинами, изменяющимися не непрерывно, а скачками.