Добавить в цитаты Настройки чтения

Страница 45 из 46



Прием, предложенный теоретиками для понимания физического явления, так называемый «мысленный эксперимент» ненов. Еще в прошлом веке великий Максвелл, чтобы изучить законы термодинамики, придумал маленького чертика («демон Максвелла»), который мог бы сортировать отдельные молекулы и атомы. Но энергетика — это не шутки! Больной вопрос человечества! Неожиданный кульбит теоретиков подвергся вдруг серьезной разработке учеными с более практической жилкой.

Вскоре появляется статья профессора Ванкуверского (Канада) университета Дж. Шелтона. Он занялся подсчетом той энергии, которую можно было бы получить, опуская камень в «черную дыру».

Результаты были ободряющими: выделится, оказывается, вся (100 процентов!) энергия, заключенная в массе бросаемого в «черную дыру» груза. Как если бы произошла полная аннигиляция его массы!

Шелтона вскоре поправили люди с более развитым, чем у профессора, инженерным чутьем. Г. Гиббоне из Кембриджа (Англия), рассуждая как практик, показал: во-первых, часть выделяющейся энергии (37 процентов) потратится на натяжение веревки, а во-вторых, по мере опускания груза, притяжение «черной дыры» будет возрастать. Поэтому, как бы прочна веревка ни была, рано или поздно она оборвется. Даже самые прочные тросы из стальной рояльной проволоки. И поэтому выделяемая энергия (расчеты Гиббонса) должна быть в тысячу миллиардов раз меньше, чем вычислил Шелтон. Но ведь эта малая доля берется от гигантской величины! Для землян и она представляла бы существенный интерес.

Тема «энергетика и «черные дыры» на этом, однако, не закончилась. Правда, продолжалась она уже в иной плоскости. Дело в том, что согласно одной из космогонических гипотез наша вселенная, возможно, порождена «черной дырой», взорвавшейся по неизвестным причинам 10—12 миллиардов лет назад. Звезды и галактики, образовавшиеся в результате этого катаклизма, до сих пор разбегаются от эпицентра взрыва. Раз так, то вполне вероятно, что какие-то осколки этой первоначальной «Черной Дыры» остались в сверхсжатом состоянии — этакие малюсенькие «черные дырочки»! — и разлетаются вместе с обычным веществом.

Подсчитана даже плотность, с которой эти остаточные «черные дыры» распределены в пространстве — одна «черная дыра» на куб со стороной в 1000 километров. В объеме земного шара может находиться несколько сот «черных дыр». Маленькие «черные дыры» способны затеряться где угодно — в земле, в воздухе, в океанах. Если все это действительно так и человек вдруг обнаружит «черные дыры» не в космосе, а у себя на Земле, то могут возникнуть уже вполне утилитарные вопросы: как использовать ту колоссальную энергию, которая сосредоточена в «черных дырах», как ее оттуда извлечь, и так далее...

Вероятные невероятности

Каменный век, бронзовый, железный — они длились тысячелетия. Век пара, кончающийся век двигателей внутреннего сгорания — тут дело пошло уже быстрее! А в последние десятилетия и вообще наблюдается какая-то чехарда из эпох: век электричества, век радио, пластмасс, кибернетики, генной инженерии...

Нет ничего удивительного, если в этой сумятице вскоре наступит век мезонов, век нейтрино, гравитонов, кварков, глюонов... Сейчас основной носитель энергии — электроны, завтра может быть водород, а что потом?

Все говорит за то, что мы, несомненно, находимся в начале новой эры, эры тончайшей техники, в которой человек будет манипулировать все более мелкими единицами, вплоть до атомных и субатомных размеров.

Такая техника еще находится в колыбели. Но несомненно, что физика высоких энергий (помянем добрым словом ускорители!), изучая крохотные расстояния и мельчайшие интервалы времени, будет источником новых идей и новых руководящих принципов, и они дадут совершенно новую технологию.

Только один пример.

Уже почти 30 лет физики штурмуют термоядерный синтез. Температуру ионов удалось довести до многих десятков миллионов градусов. Осталось повысить плотность плазмы и увеличить время ее удержания примерно в 40 раз. Специалисты обещают сделать это лет через 10—20.

Такой путь к термоядерному синтезу можно сравнить с лобовой атакой. А нет ли обходных путей? Есть! Катаклизм реакций ядерного синтеза с помощью мю-мезонов.

Долго и сложно рассказывать, как эта довольно старая (с 1949 г.) идея постепенно прокладывала себе дорогу. Укажем лишь на ее преимущества перед «классическим термоядом».

Тут, оказывается, не нужны температуры в десятки миллионов градусов, не нужны и хитроумные магнитные поля. Мезонный реактор представляет собой просто сосуд с газом — смесью дейтерия и трития, в который впрыскиваются мезоны.

Размеры сосуда зависят от давления газа, и при давлении в десятки атмосфер диаметр реактора составит около десяти сантиметров.

Карманный реактор! На его основе можно, к примеру, сделать термоядерный автомобильный двигатель!..



Трудности «холодного термояда»? Только в том, что пока нет дешевого источника мю-мезонов. И он должен быть не только экономичным, но, главное, компактным: не то что используемые сейчас гиганты-ускорители. (Минимальная энергия, необходимая для получения мю-мезонов — 100 МэВ).

Мезонные реакторы строить рано, но надо помнить: все революционные идеи обычно проходят три стадии:

«Это сумасшедшие мечты и пустая трата времени»;

«Собственно, это осуществимо, но стоит ли овчинка выделки?» (как раз такой этап переживает сейчас идея «холодного термояда»);

3. «Я всегда утверждал и всегда буду утверждать, что это блестящая мысль!»

Трудно говорить о будущем энергетики. Ибо энергетика быстро вовлекает в свою орбиту все самые новейшие завоевания науки и техники. Скажем, почему бы основой энергетики будущего не стать... вакууму? Ведь вакуум — это отнюдь не «ничто», а, как утверждают ученые, некая динамическая субстанция с очень сложными физическими свойствами.

Удивительно, но об этом догадывался еще Аристотель. Он писал: «...Надо признать, что дело физика — рассмотреть вопрос о пустоте, существует она или нет и в каком виде существует или что она такое...»

Ему много веков спустя вторил (о эта интуиция великих умов!) Р. Декарт: «...Все пространства, которые обычно считают пустыми и в которых не чувствуется ничего, кроме воздуха, на самом деле так же наполнены, и притом той же самой материей, как и те пространства, где мы чувствуем другие тела...»

Этот перечень цитат, где прозревается грядущее научное и практическое значение вакуума, можно было бы легко продолжить, сославшись на И. Ньютона, Д. Менделеева и других ученых.

Да, корифеи науки не заблуждались: физический вакуум становится сейчас непосредственным объектом многих исследований физиков во всех концах мира.

Но прежде чем исследовать вакуум, его надо создать! И не просто откачать воздух, удалить даже следы газов, необходимо, чтобы в экспериментальной установке не было никаких реальных частиц.

Хорошо, допустим, мы «держим в руках» уголок мира, где нет ни фотонов, ни пионов, ни пи-мезонов, — словом, нет ничего. Частиц нет, но поля остались! Согласно законам квантовой механики не может быть во вселенной участка, где нет полей.

Итак, мы достигли желаемого: реальных, долгоживущих (хотя бы в масштабах микромира) частиц в физическом вакууме нет. Однако раз есть поле, пусть без частиц, то оно должно колебаться. А при этих колебаниях рождаются и тут же исчезают кванты — те самые, которых, по определению, нет.

Колеблется электромагнитное поле — рождаются и пропадают фотоны. Колеблется электронно-позитронное поле — появляются и исчезают электроны и позитроны. И вообще все виды частиц, соответствующих любым полям.

И вот физический вакуум предстал перед нами отнюдь не пустым, но заполненным частицами особого рода, неполноправными, гибнущими (исчезающими) сразу после рождения. Одновременно и существующими и нет, воистину эфемерными.

Такие квазичастицы в физике носят название виртуальных. Их в принципе вроде бы невозможно зафиксировать в вакууме. Но — опять парадокс! — эти призраки микромира, почти фантомы, тем не менее могут взаимодействовать с частицами реальными, настоящими, влиять на их поведение.