Страница 24 из 25
Рис. 4–8. Модель рождения, смерти и инновации в применении к эволюции генных семейств. Под рождением подразумевается генная дупликация или приобретение псевдопаралогичного гена путем горизонтального переноса с последующим расширением паралогичного семейства, смертью называется утрата гена (независимо от способа утраты), а инновацией считается приобретение нового гена, который становится родоначальником нового семейства (Karev et al., 2002)
Структура и эволюция сетей: всеобщность степенного закона и стоящие за ним фундаментальные процессы
Сеть (network) – популярнейшее понятие системной биологии, повсеместно пронизывающее современную культуру, не только в рамках биологии или науки в целом[41]. В самом деле, трудно придумать более естественный способ представления связей между многочисленными объектами, чем сеть (в математике рассматриваемую как ориентированный или неориентированный граф). В биологическом контексте узлами (или иначе – вершинами) сети часто представляют гены или белки, а ребрами (связями между узлами) обозначают их взаимодействия, которые могут быть физическими, генетическими или регуляторными (Barabasi and Oltvai, 2004). К настоящему времени разработано множество методов описания и сравнения структур (топологий) сетей (табл. 4–1). Наиболее часто для анализа используется понятие функции распределения степеней вершин, где под степенью вершины понимают число ребер, связывающих эту вершину с другими. Сравнение таких функций, выполненное для сетей различного типа, показало принципиальное отличие биологических сетей (а также многих небиологических, включая Интернет) от случайных графов: случайные графы имеют колоколообразное распределение Пуассона, а для биологических сетей распределения описываются степенной функцией (табл. 4–1). Сети, имеющие степенные функции распределения степеней вершин, называют масштабно-инвариантными сетями, так как графики их функций внешне не меняются при масштабировании (обратите внимание на прямую линию в двойных логарифмических координатах на табл. 4–1). Такие сети всегда содержат небольшое число вершин с высокими степенями, так называемых хабов (hubs), и большое число слабосвязанных вершин.
Таблица 4–1. Случайные и масштабно-инвариантные сети.
Рис. 4–9. Предпочтительное присоединение в эволюции биологических сетей: а – фрагмент сети и новый добавляемый элемент; б – результат включения новой вершины в сеть. Ki = степень i-й вершины, pi = вероятность присоединения новой вершины к вершине i (см. табл. 4–1)
Примечательно, что степенная функция распределения степеней вершин, по всей видимости, является неотъемлемым свойством эволюционирующих сетей (включая Интернет) и не обязательно имеет биологическое происхождение. Все типы биологических сетей, как описывающих физические взаимодействия между белками, так и отражающих взаимную регуляцию генов, несомненно, появились в результате эволюции и обладают указанным типом распределения (другими словами, являются масштабно-инвариантными). Для объяснения универсального степенного закона распределения Барабаши с коллегами предложили принцип предпочтительного присоединения (preferential attachment) новых вершин, что на простом циничном языке означает, что в процессе эволюции сети «богатые делаются еще богаче» (Barabasi, 2002). Предпочтительное присоединение представляет собой стохастический, неадаптивный процесс. В самом деле, когда создается новый сайт в Интернете и случайно связывается с другими сайтами, с большей вероятностью он окажется связанным с хабом, чем с изолированным сайтом, просто потому что очень многие различные пути в сети ведут к хабам (табл. 4–1). Этот режим эволюции по своей природе консервативен – сеть сохраняет свою структуру в процессе роста. Является ли предпочтительное присоединение главным принципом эволюции биологических сетей? По этому вопросу еще не достигнуто согласия. В случае если этот принцип существен для биологических сетей, должны обнаружиться некоторые специфические биологические механизмы, обеспечивающие его выполнение (рис. 4–9). Высокая интерактивность хабов, представленная «липкостью» некоторых белков, склонных к взаимодействиям, не обязательно функционально значимым, со многими другими белками, могла бы быть одним из таких механизмов. Еще более важный вклад в формирование сетей осуществляется посредством важнейшего механизма эволюции – генной дупликации. Когда ген удваивается, все имеющиеся его связи с другими генами также удваиваются, а потом начинают постепенно расходиться в процессе последующей эволюции. В простейшей модели эволюции (такой как сбалансированная модель рождения, смерти и обновления), если частота генной дупликации пропорциональна размеру семейства, структура сети (то есть распределение степеней вершин) будет сохраняться даже при отсутствии давления отбора (Koonin et al., 2002; Lynch, 2007a).
Разбиение генома по биологическим функциям: универсальный степенной закон
До сих пор в нашем обсуждении универсальных количественных закономерностей в геномной эволюции мы преднамеренно обходили стороной вопрос биологических функций. Конечно, это абстракция: геном ни в коем случае не сумма безликих «молекул», а ансамбль генов, каждый из которых кодирует определенную биологическую функцию[42]. Сначала может показаться неожиданным, что способ рассуждения, позаимствованный из статистической физики, может быть применен и к биологическим функциям. Для применения такого подхода необходимо разделить гены на большие функциональные классы, о которых можно думать как о разных типах «молекул» и которые пригодны для статистического анализа, если они включают достаточно много генов.
Как показывается в серии доскональных исследований Эрика Ван Нимвегена[43], различные функциональные классы генов по-разному соотносятся с общим числом генов в геноме (Molina and van Nimwegen, 2009; van Nimwegen, 2003). Не учитывая некоторые отклонения, для прокариот можно указать три основных показателя степени, описывающие эти соотношения: 0, 1 и 2. Генам белков, участвующих в информационных процессах (трансляции, транскрипции и репликации), соответствует показатель степени 0 – число таких генов достигает некоторого константного значения уже в минимальных геномах и в принципе не зависит от сложности генома. Число метаболических ферментов и транспортных белков примерно прямо пропорционально общему числу генов (показатель степени 1). Регуляторные гены и компоненты систем передачи сигналов показывают квадратичную зависимость (показатель степени равен 2; рис. 4-10). Показатели степени этих трех обширных классов остаются неизменными, с очень небольшими отклонениями, для всех групп прокариот, и это позволяет предположить, что разница в эволюционной динамике генов с различными функциями отражает какие-то фундаментальные законы эволюции клеточных организмов, или, другими словами, строгие и четко выраженные ограничения в функциональном устройстве геномов. Для генов эукариот обнаружены похожие, хотя и не такие явные, степенные соотношения, показатель степени для регуляторных генов эукариот значительно больше 1 (хотя и меньше 2). Имея в виду все вышесказанное, можно заключить, что эти соотношения представляют еще один набор универсалий геномной эволюции, которые становятся еще интереснее при рассмотрении их связи с функциональным устройством клетки.
41
Многие читатели вспомнят теорию шести рукопожатий. Еще более знакомая иллюстрация встречается в журналах, бесплатно предоставляемых во время рейса большинством авиалиний. В следующий раз во время перелета взгляните на неизменно печатаемую на тыльной стороне журнала сеть авиатрасс – это прекрасный пример масштабно-инвариантной сети, с авиационными хабами в Атланте, Чикаго или Денвере. И конечно, Интернет – это тоже масштабно-инвариантная сеть. Увлекательное, и достаточно точное теоретически, рассмотрение сетей во всех сферах жизни можно найти в популярных книгах Альберта-Ласло Барабаши, одного из пионеров сетевой биологии (Linked. The New Science of Networks. New York: Perseus Press, 2002), и Дункана Ваттса (Six Degrees: The Science of a Co
42
Точнее, конечно, будет сказать, что каждый ген вносит вклад в разные биологические функции, поскольку все гены обладают той или иной степенью плейотропии.
43
У каждого важного открытия есть свои предшественники – нужно только повнимательнее поискать. Я думаю, это один из «универсальных законов» истории науки. Похоже на то, что «закон Ван Нимвегена» был впервые описан в статье о геноме синегнойной палочки, но без акцента на нем и без сколько-нибудь серьезного анализа (C. K. Stover, X. Q. Pham, A. L. Erwin, S. D. Mizoguchi, P. Warrener, M. J. Hickey, F. S. Brinkman, W. O. Hufnagle, D. J. Kowalik, M. Lagrou, R. L. Garber, L. Goltry, E. Tolentino, S. Westbrock-Wadman, Y. Yuan, L. L. Brody, S. N. Coulter, K. R. Folger, A. Kas, K. Larbig, R. Lim, K. Smith, D. Spencer, G. K. Wong, Z. Wu, I. T. Paulsen, J. Reizer, M. H. Saier, R. E. Hancock, S. Lory, and M. V. Olson. Complete Genome Sequence of Pseudomonas Aeruginosa PAO1, an Opportunistic Pathogen // Nature 406 (2000): 959–964).