Страница 3 из 67
В данной книге, отдельно не обсуждается роль предлагаемых технологий для развития военнопромышленного комплекса, поскольку это очевидно. Подразумевается, что предлагаемые идеи имеют большое значение для совершенствования новейших видов вооружения, и разработки в данной области должны получить серьезную государственную поддержку, как стратегически важные проекты.
Глава 1 Реактивный принцип в замкнутой системе
Зададимся простым вопросом: на нашей планете постоянно в движении находятся миллиарды людей, машин и т. п. Все они двигаются реактивным методом, отталкиваясь от поверхности планеты. Каждый из нас движется по дороге в нужном направлении, сообщая планете соответствующий импульс в противоположном направлении. Влияет ли суммарный реактивный импульс на скорость вращения планеты? Ответ очевиден: нет, не влияет. Вектора сил реакции планеты на действия отдельных людей, машин и т. п. не упорядочены, поэтому, в системе отсчета планеты, суммарный реактивный импульс в ответ на множество импульсов равен нулю.
Данную ситуацию можно воспроизвести в техническом устройстве, которое позволяет создавать реактивные транспортные средства нового типа, требующие источник энергии (тепла), но не расходующие рабочую реактивную массу. Рассмотрим схему, показанную на рис. 1.
Рис. 1. Движитель с замкнутым контуром реактивной массы
В данной конструкции должен быть реактор (камера сгорания), в котором рабочая масса нагревается источником тепла, расширяется, давит на стенки реактора, и вылетает через сопло. Автоматическая система управления должна обеспечить регулировку величины давления внутри реактора, подавая в него охлажденное рабочее вещество, в нужном количестве, и регулируя подачу тепловой энергии от источника тепла.
Очевидно, что реактивный поток массы вещества, выбрасываясь из реактора через сопло назад, будет сообщать всему корпусу движителя импульс вперед, что обеспечит ускоренное движение всего транспортного средства, в нужном направлении. В отличие от обычных реактивных движителей, предлагается направлять реактивный поток не в окружающую среду, а в специальный «глушитель», в котором частицы рабочей массы теряют свою кинетическую энергию, отдавая тепло через теплообменник в окружающую среду. Далее, с помощью системы принудительной циркуляции, охлажденная рабочая масса должна возвращаться в реактор.
Вещество, применяемое в роли реактивной рабочей массы, не должно изменять своих химических свойств, при многократном нагреве и охлаждении. Это вещество не является сгораемым топливом, которое применяется однократно, меняет свои химические характеристики, и выбрасывается в окружающую среду. От рабочего вещества реактивного замкнутого цикла требуется, чтобы оно, при минимальных затратах тепловой энергии, быстро и значительно расширялось в объеме при нагреве, что позволит создать мощный реактивный поток, имеющий большую кинетическую энергию. Желательно также, чтобы частицы рабочего вещества имели большую массу, так как импульс частицы есть произведение ее массы и скорости.
Древние арийские рукописи упоминают о летательных аппаратах, использующих ртуть в замкнутом цикле: они называли их «виманы». Современные технологи смогут подобрать и другие вещества, кроме ртути, которые целесообразно использовать в подобных циклах нагрева – охлаждения, причем, с большим коэффициентом объемного расширения при нагреве, и большой атомной массой частиц. Возможно, это будут сплавы металлов.
Данное устройство, рис. 1, впервые обсуждалось в 1996 году [1]. Оно было названо «энтропийный движитель», поскольку в нем создается градиент энтропии при реактивном взаимодействии: для части импульса, который передается корпусу движителя, необходимо обеспечить минимум энтропии, его импульс формируется в одном заданном направлении. Для реактивного потока рабочей массы, за счет специальной конструкции «глушителя», ставится задача получить максимум энтропии, направляя импульсы частиц рабочей массы хаотически в разных направлениях. Надеюсь, читатель понимает аналогию с рассмотренной ранее задачей о передаче реактивных импульсов планете от многих объектов, которые по ней хаотически движутся, отталкиваясь от нее.
Недостатком предлагаемой конструкции движителя является необходимость в отдельном источнике тепла, нагревающем рабочую массу. В обычных реактивных системах, топливо само горит, объединяя в себе функции рабочей реактивной массы и источника тепла. Однако, несомненным преимуществом реактивных систем замкнутого цикла рабочей массы является возможность длительной работы, практически неограниченной, при условии полного возврата рабочей массы в реактор (камеру сгорания) и работоспособности источника тепла.
Для космической техники, эти функции очень существенны, и если источник тепла может получать подзаряд от солнечных батарей, то длительность полета становится неограниченной. Для мощных движителей, источником тепла может быть ядерный или термоядерный реактор, с запасом ресурсов на десятки лет.
Очевидно, что такие движители могут найти применение в подводном флоте, поскольку они не создают шумов, хотя оставляют за собой тепловой след.
Мы обсуждали данную тему, в частном порядке, с Академиком Владимиром Ивановичем Зубовым в 19941999 годах. Он высоко оценил саму идею, не сомневался в ее теоретическом обосновании, и выражал интерес к прикладным исследованиям. Однако, тогда мы не смогли создать рабочую группу в РАН. Возможно, такие проекты идут в лабораториях разных стран, и хотелось бы вновь поднять данную тему в России.
Рассмотрим еще один пример реактивного движителя, работающего по замкнутому циклу.
Виктор Шаубергер, еще в 1930 году сконструировал свой известный автономный самовращающийся генератор, таким образом, что он создавал два процесса: вращение ротора, которое передавалось электрогенератору, и осевую движущую (подъемную) силу. На рис. 2 показан генератор электроэнергии и его изобретатель (фотография публикуется с разрешения семьи Шаубергера).
Рис. 2. Виктор Шаубергер и его генератор энергии
Данный генератор обеспечивал электроэнергией дом изобретателя несколько лет. На рис. 3 показано внутреннее устройство генератора, это фотография модели, которая хранится в музее Шаубергера, в Австрии. В верхней части ротора, видны входные отверстия спиральных трубок, через которые в ротор подается смесь воздуха и воды. Вращение ротора, через шкив, передается на обратимый мотор – генератор. При разгоне ротора, мотор питается от аккумуляторных батарей, а затем, он становится генератором, и обеспечивает электроэнергией полезную нагрузку.
Рис. 3. Генератор Шаубергера в открытом виде
В 2010–2011 годах, ООО «Фарадей», г. Тула, была разработана аналогичная конструкция привода, имеющего расчетную мощность 20 кВт, рис. 4. Расчеты оформлены в виде Отчета по НИР [2]. Разработан также полный комплект конструкторской документации, поскольку планировалось изготовление данного самовращающегося привода на одном из машиностроительных предприятий, находящихся на Урале. На рис. 4 показана схема экспериментальной установки, имеющей горизонтальное расположение оси ротора.
Рис. 4. Генератор Фролова по схеме Шаубергера
Отметим, что на схеме показаны только две спиральные трубки ротора, хотя в реальной конструкции их большее количество. Электрогенератор подсоединяется в левой части вала ротора.
В данном проекте, были найдены пути преобразования низкопотенциальной тепловой энергии среды, использующие упругое рабочее тело (смесь воды и воздуха). Одной из задач проекта было создание методики расчета элементов конструкции, поскольку самоподдерживающийся процесс вращения ротора, как и вихревые природные процессы, могут быть теоретически смоделированы и воспроизведены. Главная задача – получить автономный источник энергии, то есть, ротор должен перейти в режим самовращения, и обеспечить вращение электрогенератора. Кроме этого, в данной конструкции используется такое технические решения, которое позволяет создавать не только вращение, но и движущую силу, направленную вдоль оси вращения ротора.