Добавить в цитаты Настройки чтения

Страница 71 из 72

Длительность импульсов питания источника света должна быть минимальной, но не менее критической, так как ток на выходе фотоэлектрического преобразователя нарастает не мгновенно, а имеет некоторую задержку. При достижении максимально возможной величины тока на выходе фотоэлемента, источник фотонов можно обесточить. Именно такие импульсы показаны на рис. 231.

Рис. 231. Инерциальность фотоэффекта

После этого, уже при отсутствии тока питания в цепи источника света, ток на выходе фотоэлемента плавно уменьшается, и спад тока имеет длительность, которая зависит от ряда факторов. Причиной этого явления, как можно предположить, является инерция электронов, продолжающих движение после окончания воздействия фотонов на кристаллы фотоэлектрического преобразователя. Кроме того, фотоэлемент имеет некоторую электрическую емкость. Суммируя энергию импульсов на выходе фотоэлектрического преобразователя, за счет инерциальности фотоэффекта, мы можем получить значительно больше энергии, чем было затрачено на создание импульсов в источнике света. В дальнейших экспериментах, был найден второй эффект: при взаимном экранировании импульсной газоразрядной лампы и фотоэлектрического преобразователя, были обнаружены импульсы электрического тока на выходе фотоэлектрического преобразователя энергии.

Не имеет значения, экранирована ли в данном случае лампа или фотоэлемент. Импульсы на выходе фотоэлемента соответствовали по времени началу импульсов возбуждения газоразрядной лампы.

Был сделан вывод о том, что влияние фронта световой волны, создаваемой импульсной газоразрядной лампой, на фотоэлемент надо рассматривать, как проявление продольной волны в эфире. Фактически, при постоянном освещении фотоэлектрического преобразователя потоком фотонов, энергия на выходе зависит от частоты и интенсивности света. Электроны получают энергию синусоидального «колебательного характера», что заставляет их «раскачиваться» и переходить на другой энергетический уровень. При импульсном освещении, дополнительную энергию электронам сообщает фронт волны, создающий эффект сдвига, как любая продольная волна.

Учитывая эти выводы о роли фронта импульса света в фотоэффекте, были изучены другие способы получения электрической мощности на выходе фотоэлектрического преобразователя, полностью экранированного от фотонов видимого диапазона. Обнаружено, что экранированная солнечная батарея «реагирует» на находящийся рядом с ней импульсный дуговой электрический разряд, высоковольтный источник переменного электрического поля, вращающееся электрическое поле, пульсирующую газоразрядную лампу и другие источники продольных волн в эфире. Все эти источники продольной волны могут быть энергетически малозатратными, по сравнению с мощностью на выходе.

Целесообразно, для таких случаев, использовать название «продольный фотоэффект». Перспективы коммерческого применения продольного фотоэффекта очень интересные. На рис. 232 показана схема устройства, включающего пакет из фотоэлектрических преобразователей и источник продольной волны, которые могут быть основой автономного энергокомплекса. Отметим, что для данной технологии, нет необходимости располагать фотоэлементы на плоской поверхности большой площади: они могут быть сложены стопкой в пакет, изолированы тонкой диэлектрической прокладкой друг от друга, и соединены проводниками последовательно или параллельно в группы.

Рис. 232. Воздействие продольных волн на фотоэлементы

Устройство представляется компактным и надежным, а главное, автономным источником энергии, то есть не зависящим от наличия солнечного света.

Источники продольных волн, и теория их работы, рассмотрены, в частности, Профессором Кириллом Павловичем Бутусовым, Санкт-Петербург. Один из вариантов – простой электрический сферический уединенный конденсатор, площадь поверхности которого периодически изменяется. При изменении поверхности любого заряженного тела, изменяется поверхностная плотность заряда, благодаря чему, в окружающем пространстве создается продольная волна.





Впрочем, источником продольных волн может быть любое изменение плотности энергии или вещества, в том числе, неэлектромагнитной природы. Николай Александрович Козырев изучал волны «плотности времени» низкой частоты, которые создаются процессами растворения или кристаллизации, то есть, необратимыми процессами, идущими с изменениями энтропии. Нас, конечно, интересуют высокочастотные процессы, но физику явления необходимо описать максимально подробно. В будущем, возможно, найдутся такие конструктивные решения, которые позволят получать большую, практически значимую, электрическую мощность, при использовании низкочастотных продольных волн. Дело в том, что существуют природные суточные и сезонные изменения плотности эфира. Этот источник энергии требует изучения, для создания «приливных эфирных электростанций», или, так сказать, «эфирнобарометрических» генераторов энергии, работающих за счет натуральных изменений плотности эфира.

Практический способ создания продольных волн был также показан Спартаком Михайловичем Поляковым в книге «Введение в экспериментальную гравитонику», Москва, издательство «Прометей», 1991 год. Спартак Михайлович десятки лет занимался вопросами создания гравитационного излучения, и экспериментально показал способы генерирования продольных волн. Для наших целей, подходит его высокочастотный способ, основанный на магнитострикционном эффекте. Это и есть «изменение объемной плотности вещества», о котором писал Профессор Бутусов. Для увеличения эффекта, поверхность излучателя может быть металлизирована, и электрически заряжена.

По аналогии, предлагается также изучить такой метод создания продольных волн, как электрострикция, то есть объемное сжатие вещества в электрическом поле. В отличие от магнитострикции, требующей источник тока для создания переменного магнитного поля, для электрострикции необходимо создать только переменное электрическое поле, а потребление от первичного источника может быть минимальным. Существуют стандартные электрострикционные излучатели продольных волн, выпускаемые в виде сферических или цилиндрических конденсаторов с пьезокерамическим диэлектриком.

Также отметим такой способ вызывать ток на выходе экранированного фотоэлемента, как переменное или вращающееся электрическое поле. Затраты первичного источника поля могут быть небольшими, по сравнению с мощностью, генерируемой фотоэлементом.

Итак, эффекты, найденные в экспериментах по импульсному воздействию на кристаллические фотоэлементы, а именно, инерциальность фотоэффекта и продольный фотоэффект, позволяют конструировать автономные источники энергии, состоящие из фотоэлементов и импульсных источников продольных волн. Данные эффекты взаимосвязаны.

Инерциальный ток электронов обусловлен наличием массы покоя электронов, а масса покоя частицы и ее инерция – это один из эфиродинамических эффектов. Аналогичным образом действует «ударное возбуждение» колебаний в электрической цепи, которое мы рассматривали в главе про работы Тесла. Следовательно, избыточная энергия данных процессов есть результат преобразования свободной энергии эфира. Мы не можем получить «нечто из ничего», все явления, которые мы рассматриваем, могут иметь место только как различного рода преобразования формы энергии.Данные эффекты предлагаются для коммерциализации и создания компактных источников энергии. Требуется их независимая проверка и экспертиза.

Послесловие

Прочитав эту книгу, мои родители сказали: «Мы все поняли, это «азбука» для изобретателей». В общем, именно это и получилось. «Аз Буки Веди Глаголь Добро.» У меня не было задачи собрать все технологии, известные в данной области, в одну «энциклопедию». Как говорится, «куча кирпичей – это еще не дом». Накопление фактов создает качественно новое знание, при условии возникновения аналогий и построения методики решения задач. Надеюсь, что в этом смысле, книга была интересной и полезной.