Страница 67 из 72
Таким красивым художественным образом, кстати, эта повесть про любовь, Артур Конан Дойль дал нам ценную информацию о реальном методе трансмутации и синтеза химических элементов: электролиз твердых веществ и расплавов. Именно таким методом, Болотов получал из расплава свинца новые химические элементы.
Отметим, что известный Шерлок Хомс учил нас обращать внимание на нюансы, проводить аналогии и делать дедуктивные выводы. Например, почему Конан Дойль пишет про эксперименты в субботу, ведь это не является принципиальным? Видимо, герой – алхимик относился к тем энтузиастам – исследователям законов естествознания, которые по субботам работают, а не отдыхают. Впрочем, дело не в этом. Понимая, что эти технологии вполне реальны, весь современный финансовый мир, и его фундамент – «золотой эквивалент», представляются простой условностью, если есть возможность производить золото в любом количестве. При всем уважении к работникам банковского сектора экономики, а также к самим «изобретателям золотого эквивалента и денежных систем условных ценностей», в современном мире отмечаются тенденции к смене этой концепции. Китай, например, активно запасает материальные ресурсы, необходимые для высокотехнологичных производств, в том числе, медь. Это имеет больше практического смысла. Абсолютную ценность приобретают те материалы, запасы которых ограничены, и при этом, они применяются в технологических производственных циклах, поэтому спрос на них будет расти в обозримом будущем.
Разумеется, способ преобразования вещества по «методу Конан Дойля», или как говорят в научном мире «трансмутации» химических элементов, требуют больших затрат электроэнергии, если не создавать резонансные условия «вибрации эфира», как показал нам Джон Кили. Аналогичные результаты, иногда, получаются при трансмутации химических элементов в промышленных индукционных плавильных печках, работающих на частотах 28 МГц.
Промышленное получение золота, а также других ценных химических элементов, нас сейчас не очень интересует. Задача это вполне реальная, но относится к области лицензированной деятельности. Наши задачи исследований в данном направлении состоят в поиске оптимальных условий протекания реакций преобразования одних химических элементов в другие, идущие с максимальным выделением тепла, при минимальных затратах энергии на входе.
Рассмотрим другие проекты, связанные с плазменными процессами. В работе А.В. Чернетского, «О физической природе биоэнергетических явлений и их моделировании», Москва, Издательство ВЗПИ, 1989 год, есть описание интересных экспериментов по созданию продольных волн в плазме. Размышляя о природе энергии биологических объектов, Чернетский пишет: «По нашим представлениям, источником энергии является физический вакуум. Как известно, в нем непрерывно происходят, так называемые «нулевые колебания», когда поглощаются фотоны, и образуются виртуальные частицы (электрон и позитрон), которые через некоторое время аннигилируют, что приводит к возникновению новых фотонов. В плазменных системах типа самогенерирующего (СГ) разряда, который нами исследовался, в поверхностном слое плазмы происходит разделение зарядов, и возникает сильное электрическое поле, в котором происходит поляризация физического вакуума. Движение виртуальных частиц приобретают определенную ориентацию. На границе поверхностного слоя плазмы создается движущийся поверхностный заряд, что приводит к расширению слоя, а, следовательно, к увеличению в нем напряженности электрического поля разделения зарядов, и, соответственно, ускорению электронов плазмы».
Таким образом, Чернетский вводит понятие «плазменновакуумного» эффекта, суть которого в передаче энергии от частиц вакуума частицам плазмы. Энергетический выход в работах Чернетского в несколько раз превышал затраты энергии. Рассмотрим особенности СГР – «самогенерирующего разряда». По Чернетскому, это «особая форма электрической дуги, которая возникает при определенных (критических) плотностях разрядных токов». Известно, что вольтамперная характеристика дуговых процессов имеет падающий и возрастающий участки. На падающем участке, когда ток падает при повышении напряжения, создается ситуация с «отрицательным сопротивлением разряда», и возможно возникновение незатухающих колебаний.
Это было известно, но Чернетский дополнительно обнаружил возможность возникновения незатухающих колебаний на возрастающем участке вольтамперной характеристики, причем, еще в 1960-е годы. При этом возникает колебательная неустойчивость плазмы, а также условия отрицательной проводимости плазмы. Если такой разряд включить в колебательный контур (катушка индуктивности и конденсатор), то он становится активным элементом, поддерживающим электрические колебания в цепи, даже при наличии полезной нагрузки. Фактически, такой электрический разряд, встроенный в колебательный контур, становится источником энергии.
Неустойчивость плазмы, в данном случае, Чернетский объясняет «эффектом пинчевания» при сильных токах (сотни Ампер). Этот эффект состоит в том, что электроны плазмы взаимодействуют с собственным магнитным полем, образуется «обратная связь» процесса, и плазменный разряд пульсирует в радиальном направлении, то есть, периодически сжимается. Важно отметить, что в этом случае возникает электрическое поле, направленное радиально, то есть к оси разряда. Вектор плотности тока также получает некоторую радиальную компоненту. Образно говоря, диаметр «шнура разряда» меняется с высокой частотой, а при таких объемных изменениях плотности энергии, как известно, возникает продольная волна в эфире, то есть, энергообмен с эфиром.
Свойства таких продольных волн, в том числе, их влияние на биологические объекты, подробно изучил Чернетский, но здесь мы ограничимся рассмотрением вопросов энергообмена частиц плазмы с «физическим вакуумом», который нас интересует с точки зрения получения избыточной тепловой и электрической энергии.
В 1980–1990 годы, Чернетский демонстрировал эффекты в устройствах мощностью около 500 кВт. Его теория «энергообмена» понятна, но мне хотелось бы получить надежные экспериментальные факты. Увы, работы Чернетского критиковали многие. Журнал «Электричество» № 12, писал в 1993 году: «По договоренности с профессором А.В. Чернетским его «генератор» подключался к генератору переменного тока, приводимого во вращение мотором постоянного тока (бортовой машинный умформер). Сила потребляемого (от аккумуляторов) мотором тока, как и напряжение, измеряются без каких-либо осложнений. Суть опыта, проведенного трижды в присутствии профессора А.В. Чернетского, состояла в измерении мощности мотора при отсутствии дуги и при горении дуги. Опыты неизменно показывали один и тот же результат, что однозначно свидетельствует об отсутствии «эффекта Чернетского».
Впрочем, что искали, то и нашли. По-моему, в этой версии эксперимента с умформером, были изменены условия LC резонанса, поэтому опыт был неудачно воспроизведен. Чернетский работал с устройствами, в которых большую роль играла распределенная емкость и индуктивность электрической сети здания, где проводился эксперимент. Их нельзя исключать из рассмотрения, поскольку именно в них образуется запас свободных электронов, участвующих в колебательных процессах.
На конференции «Новые Идеи в Естествознании», Санкт-Петербург, 1996 год, я докладывал о аналогичных способах получения избыточной энергии, и демонстрировал экспериментальную модель устройства, в котором используется искровой разряд, как часть цепи. Схема устройства показана на рис. 227.
Рис. 227. Схема эксперимента Фролова, 1996 год
Разрядник (зазор) регулируется винтом. В данной схеме нагрузка соединена последовательно с искровым разрядником. Фактически, было показано три состояния данной схемы. Первое: расстояние между электродами больше, чем расстояние пробоя, разряда нет, и нет тока в нагрузке (в лампе накаливания). Амперметр, шкала которого имеет максимальный ток 1A, в таком режиме показывает ток 0,3 Aмпера. При этом потребляемая мощность равна примерно 3 Ватта.