Страница 55 из 72
Частичный отбор энергии у частиц, должен сопровождаться нагреванием наноэлементов, например, нановолосы будут нагреваться за счет их деформаций. Упорядочивание, то есть, ламинаризацию, мы уже ранее рассматривали в главе про молекулярный двигатель. Данный метод может быть разделен на два способа: создание за счет рельефа преимущественного вектора движения частиц вдоль поверхности пластины или перпендикулярно пластине. Соответственно, давление среды на пластину со стороны рельефа либо уменьшается, либо увеличивается.
Предлагаемый материал назван САМ – силовой активный материал, или САНМ – силовой активный наноматериал, поскольку его функции состоят в создании активной силы, действующей на пластину за счет разного давления окружающей среды на разные стороны пластины. Сила называется «активной» поскольку она не требует реактивного отброса массы. Мы решаем задачу создания движущей силы противоположным методом. В реактивных движителях рабочая масса получает импульс, и отбрасывается от движителя, сообщая ему соответствующий импульс. В активном движителе все наоборот: движитель получает импульс, равный импульсу, отбираемому от молекул окружающей среды. Закон сохранения импульса, при взаимодействии движителя и рабочей массы, разумеется, строго выполняется. Окружающая среда, при этом, охлаждается.
Эффект «нанокрыла» создает не только активную силу, но и соответствующие изменения в окружающей среде, в частности, ее охлаждение. Это обусловлено тем, что создаваемый макроимпульс пластины должен быть эквивалентен потере величины микроимпульсов частиц среды. В связи с этим, САМ – технология открывает качественно новые перспективы в автономной энергетике. Применение нанотрубок для развития данной концепции представляется наиболее перспективным, хотя и другие способы получения микрорельефа, включая бионанотехнологии, могут найти практическое применение.
Данный проект находится в стадии формирования новой компании, приглашаются инвесторы и специалисты в области нанотехнологий. Обращайтесь к автору книги.
В работе Михаила Порфирьевича, есть важное замечание о необходимости упругого столкновения с поверхностью пластины. Это обязательное условия передачи импульса. При рассмотрении его конструкции, мной было предложена аналогичная версия, но более простая, без микрорельефа. Предлагаемый метод показан на рис. 207. Пластина, одна сторона которой выполнена из материала, обладающего упругими свойствами при взаимодействии с молекулами воздуха, а другая сторона пластины покрыта материалом, который поглощает импульс удара молекул воздуха, деформируется, и частично, преобразует импульс в тепловую энергию. Благодаря разнице в модуле суммарного импульса слева и справа, пластина получит импульс движущей силы в сторону ее неупругой поверхности. В данной конструкции, неупругая поверхность пластины всегда будет теплее упругой поверхности. Тепло необходимо отводить во внешнюю среду, при большой мощности конструкции.
Рис. 207. Метод создания градиента давления воздуха
Механические приводы, сконструированные по данной технологии, могут использоваться не только в энергетике для создания крутящего момента, но также на транспорте, для создания подъемной и движущей силы любой величины, без затрат топлива.
Расчет силы, при 10 % асимметрии атмосферного давления на силовой активный материал (САМ) с разных сторон, дает величины силы около 1 тонны на 1 квадратный метр.
Пакет таких 100 пластин, каждая толщиной 5 мм, с зазором 5 мм, займет объем в один кубометр, и сможет поднять в воздух 100 тонн.
В связи с этим, можно вспомнить идеи Максвелла о возможности создания некоего механизма, разделяющего молекулы газа на медленные «холодные» и быстрые «горячие». Такой механизм и есть специальный рельеф, позволяющий без затрат получать градиент температуры.
Отметим, что данный принцип был мной показан, в том числе экспериментально, на конференции «Новые идеи в естествознании», 1996 год, Санкт-Петербург, доклад «Концепция гравитации», и позднее, в 1998 году, на конференции «Пространство, время и гравитация», Петергоф, Университет, Сборник Докладов, часть 1, 1999 год. В сокращенном виде, статья по данной теме была опубликована в американском журнале ELECTRIC SPACECRAFT, № 27, 1997 год.
Простейший эксперимент в пользу предлагаемой концепции, известен еще с 1935 года, и впервые был описан в журнале Popular Science, № 126, 1935 год, объяснение которого было сделано в моем докладе в 1996 году. На рис. 208 показаны результаты взаимодействия двух грузов, которые «разбегаются» от центральной точки, теоретически, имея одинаковый импульс.
Рис. 208. Эксперимент по демонстрации асимметричного взаимодействия
В моем эксперименте, в начальной позиции пружина сжата, а грузики удерживаются вместе ниткой. После разрушения нитки (пережигания), они движутся в разные стороны, примерно с одинаковым импульсом. Особенности взаимодействия грузиков с опорой состоят в том, что справа, на рис. 208, грузик взаимодействует упруго, а слева, жестко, с деформацией. Таким образом, в правой части создаются лучшие условия для передачи импульса грузика опоре, чем в левой части устройства, где энергия импульса частично преобразуется в тепло. В результате ненулевого суммарного импульса, все устройство смещается в сторону упругого взаимодействия. Эксперимент легко повторим, с одинаковым результатом. Проводить его лучше на плавающей платформе, или полированном столе.
Напомню, что важность упругого взаимодействия для обеспечения передачи импульса рабочего тела корпусу ротора, мы уже отмечали неоднократно, в том числе, при рассмотрении схемы на рис. 2. Подробнее, технология САМ рассмотрена в моей книге «Новые космические технологии» 2012 год. В ней даны расчеты для конструирования авиационного транспорта грузоподъемностью 1 миллион тонн, причем, не требующего топлива.
Мы отвлеклись на рассмотрение данного эксперимента для того, чтобы лучше понять условия работы устройства, предложенного ранее и показанного на рис. 207. Коммерциализация данного изобретения сводится к поиску оптимальных материалов упругого и неупругого покрытия пластин. Это не так просто, учитывая массу и кинетическую энергию молекулы воздуха, то есть величину импульса. Однако, несомненным преимуществом данного метода является низкая себестоимость и широкое применение, в том числе, для аэрокосмического транспорта. Детали можно обсудить при рассмотрении технического проекта по данной теме, при моем участии в роли разработчика. Предлагается лицензия.
Один из методов механической конверсии тепловой энергии среды, предложил Б.М. Кондрашов ([email protected] /* */), в статье «Струйные энергетические технологии», журнал «Новая Энергетика». Автор пишет о «параллельном присоединения» дополнительных масс воздуха к стационарной реактивной струе газотурбинного двигателя, что происходит без дополнительных затрат энергии топлива за счёт «неуравновешенной силы внешнего давления на входной раструб (заборник) эжектора». Эти разработки относятся к технологиям «управляемого использования энергии атмосферы для выполнения работы», как пишут авторы данного изобретения.
Методы вовлечения атмосферного воздуха известны: пульсации активной струи создают периодическое разряжение среды (низкое давление) на входном патрубке эжекторной насадки. К данной области также относится открытие О.И. Кудрина: «Явление аномально высокого прироста тяги в газовом эжекционном процессе с пульсирующей активной струей». В своей статье, Кондрашов пишет: «Таким образом, за счет энергии атмосферы, преобразованной в процессе последовательного присоединения предыдущих периодов, осуществляется привод воздушного теплового насоса, при работе которого создаются условия для преобразования, в следующих периодах, низкопотенциальной энергии внешней газовой массы, находящейся в равновесном состоянии, в доступную для использования кинетическую энергию, высокопотенциальную теплоту и «холод» расчетной температуры.