Страница 52 из 72
Рис. 203. Генератор Шварца
Поскольку в продаже данной продукции еще нет, то можно предположить, что планы японской компании не были реализованы. Технология основана на «преобразовании энергии потоков нейтрино», как объяснял автор. Он говорит, что это работает «таким же образом, как и солнечные батареи, но в другом диапазоне спектра». Стержни, как он объясняет, сделаны из различных композитных материалов, они почти одинаковые, в основном состоят из тантала и вольфрама, с добавками 73 и 74 различных химических элементов. При демонстрации технологии, автор подключал выводы лампы накаливания непосредственно к паре таких стержней, что было достаточно для получения мощности.
Другое изобретение Шварца выглядит более понятным. Оно обычно демонстрируется в виде небольшого чемоданчика, внутри которого размешены элементы электронной схемы: два обычных трансформатора, мощный «открытый» электромагнит (с незамкнутым магнитопроводом) и схема преобразования энергии переменного магнитного поля. При демонстрации, Шварц подчеркивает, что крышка корпуса покрыта висмутом, для «концентрации магнитного поля внутри корпуса». В настоящее время, автор работает по коммерциализации своих технологий. Его компания называется «The Noah’s Ark Foundation», технология ERR Fluxgenerator.
Интересные аналогии с работами Шварца возникают при сравнении его технологии и украинского изобретения, патент РФ № 2419951, 208 год, авторы: Шуминский Генрик Генрикович и Гетьман Александр Иванович. Их изобретение относится к электротехнике и может быть использовано для получения электроэнергии без потребления топлива.
Предлагаемый украинскими авторами «статический генератор электрической энергии» включает корпус с пакетом металлических пластин обоих знаков, разделенных слоем стабилизированного монокристаллического сегнетоэлектрика, при этом в пакете все слои плотно прилегают друг к другу. Пластины выполнены из разнородных проводников с различной концентрацией свободных электронов: двух различных металлов, например сурьма-висмут, железоникель, титан-алюминий; различных сплавов, например хромель-алюмель, хромель-копель; комбинации металла и сплава, например железо-копель, сурьма-алюмель, висмутхромель. Один пакет пластин включает одну элементарную ячейку, которая состоит из одного сегнетоэлектрика и двух разнородных проводников, которые размещены в следующей последовательности: проводник – сегнетоэлектрик – проводник. При наличии в пакете нескольких элементарных ячеек, они подключены к источнику потребления электрической энергии последовательно, или параллельно, или комбинированно.Авторы готовы к работе с инвесторами, которых интересует создание производства генераторов энергии данного типа. Для проверки работоспособности технологии, у авторов есть рабочие образцы (прототипы) мощностью 10 ватт. Авторы тестировали экспериментальные модели под нагрузкой в течение нескольких месяцев. В патенте указан срок службы электретов 8000 часов, то есть, около 11 месяцев. Надо полагать, что данный показатель можно улучшить в несколько раз при развитии технологии. При наличии интереса к созданию производства источников энергии данного типа, и финансовых возможностей, Вы можете связаться с автором данной книги, или с авторами изобретения непосредственно.
Рассмотрим еще один из проектов нашей компании, которым мы занимались в 2002 году. Цель проекта состояла в высокоэффективном нагреве рабочего тела (воды). Предложил проект Владимир Иванович Коробейников. Техническая задача заключается в получении особого режима работы магнетрона, при котором затраты от первичного источника питания минимальны или равны нулю.
Различные режимы показаны на графике рис. 204.
Рис. 204. Зависимость силы тока катод – анод от величины магнитного поля
В верхней части показана траектория электронов на участке катод – анод. Первый режим работы (слева) соответствует случаю отсутствия магнитного поля, при этом электроны вылетают с катода, и прямолинейно двигаются на анод. Второй режим работы соответствует обычному режиму работы магнетрона, когда траектория эмиссионных электронов нелинейная, но в конце пути они попадают на анод.
Третий режим работы – критический, при дальнейшем увеличении магнитного поля, электроны уже не достигают анода, ток потребления анод – катод равен нулю, хотя к аноду и катоду по-прежнему приложено высокое напряжение. Отметим, что при таком режиме катод саморазогревается, в результате воздействия на него возвращающихся электронов и их вторичной эмиссии.
Целью работы является не только создание СВЧ излучения без больших затрат мощности, а также саморазогрев катода. В таком режиме мы можем использовать магнетронный нагреватель с водяным охлаждением, как эффективный источник тепла. Причиной появления дополнительной энергии, по-моему, является сила Лоренца, искривляющая траекторию движения электронов. Природа данной силы была описана в статьях на сайте http://alexfrolov.narod.ru, как градиент эфирного давления при движении заряженной частицы в эфирной среде. Избыточная энергия – результат преобразования энергии эфирных частиц.
Для проверки теории, в моей лаборатории, были экспериментально изучены магнетроны типа 2M18, 2M19 и OM75P(31). Стандартные магниты бариевые, кольцевые. Увеличение магнитного поля в экспериментах обеспечивалось удвоением и утроением магнитов. Также, исследовались более мощные магниты, произведенные на заводе ЭРГА, г. Калуга. Был проведен цикл измерений тепловыделения магнетронов в различных режимах. Магнетрон погружался в емкость с водой объемом 10 литров, затем по изменению температуры воды за определенное время вычислялось количество тепловой энергии. Измерения величины магнитного поля не производились, увеличение числа магнитов вдвое и втрое обеспечивало увеличение величины магнитной индукции в зазоре анод-катод. Необходимо отметить опасность данных экспериментов по причине наличия рассеянного СВЧ излучения, попадающего в поле зрения экспериментатора.
Результаты тестов: Тест 1 марта 2006 года. Магнетрон 2М218, магниты стандартные. Мощность на входе 234 ватта, тепловая мощность 178 ватт. КПД равен 76 %. Тест 6 марта 2006 года. Магнетрон 2М218, магнитное поле увеличено примерно вдвое. Мощность на входе 841 ватт, тепловая мощность 689 ватт. КПД равен 82 %. Тест 20 марта 2006 года. Магнетрон ОМ75Р(31), магниты стандартные. Мощность на входе 721 ватт, тепловая мощность 556 ватт. КПД равен 78 %. Тест 22 марта 2006 года. Магнетрон ОМ75Р(31), магнитное поле увеличено примерно втрое. Мощность на входе 478 ватт, тепловая мощность 433 ватт. КПД равен 91 %
Выводы: Эксперименты доказывают возможность получать избыточную тепловую мощность от магнетрона в режиме минимального потребления электроэнергии, при наличии достаточно мощного постоянного магнитного поля в зазоре анод-катод.
При определенных условиях, тепловая мощность, в данной конструкции, может создаваться в режиме саморазогрева катода почти без затрат тока (мощности) от первичного источника, который должен обеспечить только электрическое поле между анодом и катодом магнетрона. Применение данной технологии целесообразно в системах генерирования тепловой энергии с минимальными затратами электроэнергии.
Возможна интеграция магнетронного нагревателя воды и обычного газотурбинного электрогенератора в автономный энергогенерирующий комплекс. Данный комплекс будет способен работать без потребления топлива, отдавая часть вырабатываемой электроэнергии (10–15 %) для обеспечения высоковольтного поля в магнетроне, а остальную мощность может отдавать потребителю в виде тепловой энергии.
Коротко отметим еще одно изобретение: Ученый из Флориды, Вингейт Ламбертсон (Wingate Lambertson), более 10 лет назад, создал генератор энергии из кермета (металлокерамики), изобретенной в 1948 году учеными NASA для тепловой защиты ракет и лопастей турбин, работающих в области высоких температур. Устройство состоит из множества тонких слоев металлокерамического материала. Прикладывая высокий потенциал к этому «слоеному пирогу», автор заставляет электроны ускоренно двигаться через слои, образно говоря, как «через несколько водопадов», увеличивая кинетическую энергию от одного «прыжка» к другому. Изобретение интересное, работоспособное, но внедрение и продажи автор планирует начать не ранее 2018 года.Разработок в области твердотельных преобразователей энергии очень много, что неудивительно. Это наиболее перспективное направление, выгодно отличающееся от роторных машин своей универсальностью применения.