Добавить в цитаты Настройки чтения

Страница 6 из 18



Пока дилер метала карты, Торп, несмотря на усталость, заметил, что игра начала складываться в его пользу. В колоде было полно старших карт. Пора действовать.Он поднял ставку до 4 долларов и выиграл. Добавил выигрыш к ставке и выиграл снова. Его шансы — теперь он это чувствовал — улучшались. Лови момент.Он опять выиграл, теперь у него было 16 долларов, которые после следующего кона превратились в 32. Торп чуть притормозил и отложил 12 долларов. Поставил оставшиеся 20 — и выиграл. Потом еще несколько раз ставил двадцатку и выигрывал. Вскоре он не только отыграл свою сотню, но и получил дополнительные деньги. Хватит на сегодня.

Торп сгреб свой выигрыш и направился к выходу. Бросив взгляд на дилера, он увидел странную смесь злости и уважения у нее на лице. Как будто она увидела что-то удивительное и невероятное, чему не могла найти объяснения.

Торп как раз только что доказал, что ничего невероятного тут нет. Все было более чем реально. Система работала. Он ухмыльнулся и вышел из казино в теплый невадский рассвет. Он только что обыграл дилера.

Победа Торпа в то утро была только началом. Вскоре он начнет играть по-крупному и примется за уолл-стритских толстосумов. Он использует свои выдающиеся математические способности, чтобы заработать миллионы долларов. Торп стал первым квантом, первопроходцем, вымостившим дорогу новому племени трейдеров-математиков, которые через несколько десятилетий воцарятся на Уолл-стрит — и едва не уничтожат ее.

Более того, основой большинства важных прорывов в истории квантов стали идеи этого странноватого хитроумного математика, одним из первых научившегося использовать математику, чтобы делать деньги — поначалу за игорными столами Лас-Вегаса, а потом во всемирном казино Уолл-стрит. Не подай Торп пример, будущие финансовые титаны, например Гриффин, Мюллер, Эснесс и Вайнштейн, возможно, и не собрались бы поиграть в покер в гостинице St. Regis мартовской ночью 2006 года.

От Эдварда Оукли Торпавечно были одни неприятности. Родился в Чикаго 14 августа 1932 года в семье боевого офицера, сражавшегося на Западном фронте в Первую мировую. Его математические способности проявились еще в детстве: в 7 лет он уже мог в уме сосчитать количество секунд в году. Впоследствии его семья перебралась в калифорнийский городок Ломита неподалеку от Лос-Анджелеса, и Торп стал типичным проказником-вундеркиндом.

Его часто надолго оставляли без присмотра — во время Второй мировой мать работала в вечернюю смену на авиастроительном заводе Douglas Aircraft, а отец — в ночную смену на верфях в Сан-Педро. Мальчик был предоставлен самому себе и давал волю своему во­ображению. Особенно он любил что-нибудь взрывать. В гараже была устроена лаборатория, где он экспериментировал с маленькими самодельными взрывными устройствами. Он делал бомбы из железных трубок и нитроглицерина (нитроглицерин ему приносила подруга сестры, работавшая на химическом заводе). Испытывал свои бомбы Торп в зеленой глуши холмов Палос-Вердес.

Когда у него было более миролюбивое настроение, он забавлялся с самодельным радиоприемником и играл по радио в шахматы на расстоянии.

Однажды они с приятелем налили красной краски в бассейн Plunge в Лонг-Бич — самый большой по тем временам закрытый бассейн. Купающиеся с воплями выскакивали из воды при виде расплывающегося красного пятна, и история попала в местную газету. В другой раз он присоединил автомобильную фару к телескопу и подключил всю конструкцию к автомобильному аккумулятору. Свое изобретение он приволок на боковую аллею парка — излюбленное укромное местечко влюбленных пар, находившееся в километре от его дома — и стал дожидаться, пока припаркуются машины. Когда окна автомобилей начали запотевать, проказник нажал на кнопку и осветил сборище машин, как полицейский прожектор. А потом со смехом наблюдал, как перепуганные подростки в панике спасаются бегством.



В старших классах Торп начал заглядываться на азартные игры. Один из его любимых учителей вернулся из поездки в Лас-Вегас с целой коллекцией поучительных историй о том, как игроки в пух и прах проигрывались в рулетку. «Выиграть просто невозможно», — говорил учитель. Торп не был в этом так уверен. В окрестностях их городка было несколько игровых автоматов, изрыгавших поток монеток, если правильно дернуть за рычаг. У рулетки наверняка есть похожая ахиллесова пята — статистическая уязвимость. Торп продолжал размышлять о ней и весной 1955 года, на второй год обучения в аспирантуре на физическом факультете Калифорнийского университета. Сможет ли он разработать математическую систему, чтобы постоянно выигрывать в рулетку?

Уже тогда он думал, как при помощи математики описать скрытое устройство систем, кажущихся случайными. И этот подход он в один прекрасный день применит на рынке ценных бумаг и создаст теорию, которая ляжет в основу количественных методов инвестирования.

Проще всего было найти рулетку с каким-нибудь дефектом. В 1949 году два соседа по общежитию Чикагского университета, Альберт Гиббс и Рой Уолфорд, обнаружили дефекты у некоторых рулеток в казино Лас-Вегаса и Рино и заработали несколько тысяч долларов. Описания их подвигов попали на страницы журнала Life. Степень бакалавра Гиббс и Уолфорд получали в Калифорнийском технологическом университете в Пасадене. Об их подвиге было прекрасно известно хитроумным воспитанникам ближайшего соседа, Калифорнийского университета в Лос-Анджелесе.

Торп верил, что обыграть рулетку можно, даже если дефектов в ней нет. Более того, их отсутствие упрощало задачу: шарик будет следовать по предсказуемой траектории, как планета на орбите. Ключ к разгадке таков: поскольку крупье принимает ставки, пока шарик катится, теоретически можно определить его местонахождение, скорость шарика и вращающейся части рулетки и приблизительно предсказать, где он остановится.

Человеку такое, естественно, не по силам. Торп мечтал о компьютере, который можно носить на себе и который отслеживал бы движения шарика и рулетки и прогнозировал, в какую ячейку попадет шарик. Он верил, что создаст машину, которая сможет статистически предсказывать кажущиеся случайными параметры движения колеса: наблюдатель наденет компьютер и задаст ему информацию о скорости колеса; игрок, находящийся на некотором расстоянии, получит информацию по радиосвязи.

Торп купил маленькое дешевое колесо рулетки и снимал его на камеру во время вращения, отмеряя время секундомером, способным фиксировать сотые доли секунды. Вскоре он понял, что у колеса слишком много дефектов, чтобы с его помощью разработать предсказуемую систему. Разочарованный, он временно оставил эту идею: нужно было заканчивать аспирантуру. Но мысль о рулетке не оставляла его в покое, и вскоре он продолжил эксперименты.

Однажды на ужин к Торпу пришли родители его жены Вивиан. Они удивились, когда Торп не вышел их встречать; им стало ­любопытно, чем же он занят. Они обнаружили его на кухне, катающим стеклянные шарики по желобку в форме буквы V и отмечающим, насколько далеко укатился каждый из них. Торп объяснил, что он имитировал путь шарика на рулетке. Странно, что после этого они не решили, будто их дочь вышла замуж за какого-то психа.

Торпы впервые приехали в Лас-Вегас в 1958 году, когда Эд защитился и начал преподавать. Бережливый профессор прослышал, что можно остановиться в недорогой гостинице. Да и со своей мечтой обыграть рулетку он все еще не расстался. Плавность хода рулеток в Лас-Вегасе убедила его, что он сможет предсказать результат. Теперь ему нужно качественное полноразмерное колесо и подходящее оборудование для опытов. Заодно Торп решил проверить одну стратегию игры в блэкджек, на которую он недавно наткнулся в журнале Американской статистической ассоциации[12]. Это была 10-страничная статья[13] военного математика Роджера Болдуина и троих его коллег — Джеймса Макдермотта, Герберта Майсела и Уилберта Кэнти, — которые работали на Абердинском военном испытательном полигоне в Мэриленде. Среди поклонников блэкджека группа Болдуина получила прозвище «Всадники Апокалипсиса». Однако никто из них никогда не пробовал испытать свою стратегию в Лас-Вегасе. В течение полутора лет Всадники скармливали своим вычислительным машинам тонны информации, исследуя закономерности, связанные с тысячами разных комбинаций карт в блэкджеке. Как истинный ученый, Торп решил испытать в Лас-Вегасе и эту стратегию. И хотя результат был неубедителен (он проиграл целых 8 долларов 50 центов), он по-прежнему считал, что стратегию просто нужно доработать. Он связался с Болдуином и попросил предоставить все данные по их разработкам.