Добавить в цитаты Настройки чтения

Страница 4 из 17



Графен же (graphene, С62Н20) представляет собой тончайшую — в один атом толщиной! — пленку из тех же атомов углерода, объединенных в строгую гексогональную геометрическую структуру. Этот материал был получен исследователями в 2004 году фантастически простым образом. Ученые провели мягким графитовым карандашом по бумаге, а затем «промокнули» ее клейкой лентой, как криминалисты в фильмах, когда снимают отпечатки пальцев преступников на месте происшествия. В результате на пленке остался тончайший слой углерода.

Константин Новоселов

Андре Гейм

Все было так просто, что поначалу профессору Андре Гейму и его коллеге никто просто не поверил. Неужто можно столь обыденным способом отделить от графитового массива тончайшую, в один атомарный слой, пленку графита?

Ученым не верили настолько, что статьи, посылаемые ими в научные журналы, никто не принимал всерьез. А когда наконец удосужились проверить метод, то получили нужный результат далеко не сразу — во всяком деле необходимы навыки и определенный опыт. Но получили!

Совместная работа выходца из Института проблем технологии микроэлектроники и особо чистых материалов РАН (Черноголовка) и голландского исследователя в Университете Манчестера началась в 2001 году. Поначалу они работали порознь. Но когда Андре Гейм, адъюнкт-профессор одного из университетов Нидерландов, был приглашен на должность директора Центра мезонауки и нанотехнологии Манчестерского университета, он, в свою очередь, пригласил поработать вместе с ним молодого коллегу — стипендиата Фонда Леверхульма Константина Новоселова, с которым познакомился на одном из международных симпозиумов.

Как видите, в графите графеновые пленки слабо связаны между собой.

Наловчившись получать тончайшие углеродные пленки, ученые стали исследовать их свойства. И выяснили, что слой графита толщиной в один атом обладает рядом ценных, а порой и неожиданных свойств. Так, эта немыслимо тонкая пленка — в миллион раз тоньше листка обычной писчей бумаги! — обладает высокой прочностью, гибкостью, а главное — стабильностью свойств.

Кроме того, графен имеет высокую тепло- и электропроводность. А для полупроводниковой промышленности как раз необходимы материалы, в которых бы носители электрического заряда — электроны — могли перемещаться без помех. Дело в том, что всюду, где электроны натыкаются на препятствия и отклоняются от заданного прямого пути, идет выделение тепла. Кроме того, подобные потери ограничивают рабочую частоту работы тех или иных компонентов микроэлектронных схем.

Например, в кремнии электроны могут передвигаться относительно свободно. Но у арсенида галлия степень свободы электронов в 6 раз выше. Поэтому в мобильных телефонах и приемниках спутниковых сигналов используются микропроцессоры на основе именно арсенида галлия, а не кремния.

Так вот, это свойство, которое называется подвижностью электронов, в графеновых пленках близко к абсолютному идеалу; электроны практически не рассеиваются и весьма мало реагируют на изменения внешней среды.

Однако произвести точные замеры свойств графена ученым долгое время не удавалось — уж слишком тонка пленка. А потому только недавно выяснилось, что по подвижности электронов графен превосходит все известные на сегодня вещества и в 20 раз выше, чем в арсениде галлия. Это открывает блестящие возможности разработки новых, еще более скоростных, компонентов схем микроэлектроники. Речь уже пойдет не о мега- и гигагерцах, как в нынешних компьютерах, а о террагерцах, то есть в 1000 раз более высоких показателях.

Далее ученые приступили к созданию графенового полевого транзистора, который, используя электрическое поле, обеспечивает так называемый баллистический транспорт электронов, при котором они практически не рассеиваются.

Заготовка графеновой пленки для изготовления транзисторов.



В общем, оказалось, что баллистические транзисторы в принципе способны работать гораздо быстрее, чем обычные кремниевые. А потому открытие Гейма — Новоселова вызвало большой интерес к графену как к материалу для электроники нового поколения.

Однако есть и определенные препятствия на пути внедрения графеновых структур в производство. Главное — нет еще технологии, которая бы позволила наладить массовое производство графеновых структур с одинаковыми показателями — пока пленки делают практически вручную.

Впрочем, как полагают энтузиасты нового направления, это лишь трудности роста молетроники — микроэлектроники, схемы которой оперируют уже с отдельными молекулами. Ведь первые транзисторы тоже рождались не просто. И было немало скептиков, считавших, что лучше радиоламп вряд ли можно что-то придумать. Кроме того, графеновые пленки могут оказаться весьма перспективны в качестве покрытий для экранов мобильных телефонов и элементов солнечных батарей, в качестве чувствительных элементов в газоанализаторах.

Выступая во время церемонии вручения Europhysics Prize, Андре Гейм выразил уверенность в том, что в ближайшем будущем слово «графен» станет столь же широко известным, как «кремний».

К сказанному остается добавить, что полученная исследователями награда присуждается ежегодно с 1975 года. Причем восемь лауреатов Europhysics Prize в разное время были награждены также и Нобелевской премией.

Структура графена при сильном увеличении.

Промежутки в графеновых структурах имеют уже молекулярные размеры.

С. НИКОЛАЕВ

СЛЕДИМ ЗА СОБЫТИЯМИ

Сочиненная ДНК

В свое время мы рассказывали о том, как американские ученые создали первый в мире синтетический микроб, «склеив» в определенном порядке кусочки природных ДНК (дезоксирибонуклеиновых кислот) (см. «ЮТ» № 1 за 2003 г.). Недавно же японские ученые сумели впервые в истории создать почти полностью синтетическую молекулу ДНК. Чего можно ожидать от этого эксперимента?

Создателями молекулы, еще не известной природе, стала группа сотрудников университета Тоямы под руководством Масахико Инойе. Экспериментаторам удалось собрать молекулу ДНК из нетипичных элементов. В ней все четыре «буквы» используемого природой генетического «алфавита» — азотистые основания аденин, гуанин, тимин и цитозин — были заменены на видоизмененные азотистые основания, в частности, на изо-гуанин, изо-тимин и так далее. Затем они были встроены в природный каркас знаменитой двойной спирали ДНК, состоящий из дизоксирибозы. В итоге получилась стабильная молекула, которая закручена в точности так, как и ее природный прототип.

В принципе ученые уже давно научились собирать из кусочков натуральных ДНК и РНК нужные им цепочки. Еще в 1959 году испанец Севере Очоа и американец Артур Корнберг получили за соответствующие работы Нобелевскую премию. Удавалось ученым собирать ДНК и с частично замененными «буквами», но вот заменить весь «алфавит» получилось впервые.