Добавить в цитаты Настройки чтения

Страница 11 из 74



— очень высокие частоты (ОВЧ), или, иначе, метровые волны — от 30 до 300 мегагерц (от 10 до 1 метра);

— ультравысокие частоты (УВЧ), или дециметровые волны — от 300 до 3000 мегагерц (от 100 до 10 сантиметров);

— сверхвысокие частоты (СВЧ), или сантиметровые волны — от 3 до 30 гигагерц (от 10 до 1 сантиметра);

— крайне высокие частоты (КВЧ), или миллиметровые волны — от 30 до 300 гигагерц (от 10 до 1 миллиметра);

— гипервысокие частоты (ГВЧ), или децимиллиметровые волны (их раньше называли субмиллиметровыми) — от 300 до 3000 гигагерц (от 1 до 0,1 миллиметра).

Американские инженеры часто пользуются термином микроволны. Он постепенно прививается и у нас благодаря переводной литературе. Под понятием микроволны подразумеваются радиодиапазоны, длины волн которых менее одного метра.

Именно с диапазонами УКВ связан расцвет радиотехники. Область УКВ настолько просторна, что в ней помещается и радиовещание, и телевидение, и радиолокация, и спутниковая и радиолинейная связь, и разного рода промышленная, медицинская, научная радиоэлектроника…

Помимо своей информационной вместимости, диапазоны УКВ экономичны. Они позволяют сконцентрировать энергию волны в узком луче, и чем короче волна, тем уже и информативнее луч.

Как же удалось человеку найти радиоволны и овладеть ими — этим богатством, которое мы почти не замечаем, но без которого современное бытие уже невозможно?

"НЕ БОГ ЛИ ЭТИ ЗНАКИ НАЧЕРТАЛ?" 

ОТ ФАЛЕСА ДО ФАРАДЕЯ

Истоки радио восходят к открытию единства и взаимосвязи электричества и магнетизма. О существовании электрических и магнитных явлений люди знали еще в древние времена.

Вспомним легендарного грека Фалеса из Милета, жившего в VI веке до нашей эры. Говорят, у его златокудрой дочери было янтарное веретено. Она будто и заметила электризацию янтаря — его свойство притягивать пылинки, нити, кусочки папируса при трении о шерсть. Может быть, это и сказка, но историки свидетельствуют, что янтарь был тогда в большом ходу и на столь необычное свойство наверняка обратили бы внимание. Не исключено, что именно история с янтарным веретеном много веков спустя подарила миру новое слово — «электричество». Ведь обработанный янтарь по-гречески — электрон, что значит «притягивающий к себе».

Столь же древнюю историю имеет и магнит. Три тысячи лет назад в Китае уже пользовались простейшим компасом — указателем юга. А вот еще одно древнее применение магнита, сильно напоминающее современный прибор, с помощью которого в аэропортах определяют наличие у пассажиров металлических предметов.

Как утверждают китайские ученые, нечто подобное уже было двадцать два века назад в городе Чан-Яне (нынешнем Сиане). Там ворота перед дворцом правителя были сделаны из магнитного железа. Ни один злоумышленник не мог пронести тайком через эти ворота оружие. Невидимая сила «вытаскивала» нож или меч из-под одежды, и стража уводила преступника в темницу…



По утверждению Платона, название «магнит» дано Эврипидом. По версии Плиния, свое имя магнит получил в честь сказочного пастуха Магниса, у которого к сандалиям и к палке прилипали странные камни. В сандалиях были железные гвозди, а у палки железный наконечник.

Тит Лукреций Кар в своей поэме «О природе вещей» утверждает, что слово «магнит» происходит от названия провинции Магнезия (теперешнее название Манисса). Есть там гора, где до сих пор встречаются магнитные камни.

Впервые связь между электричеством и магнетизмом обнаружил Ганс Христиан Эрстед — профессор химии Копенгагенского университета. А точнее не он, а студент, имя которого не вошло в историю. Как-то Эрстед читал лекцию, по ходу которой он демонстрировал свойство электрического тока нагревать проволоку. Рядом с проволокой лежал компас, никакого отношения к опыту не имевший, и один из студентов заметил движение стрелки компаса в тот момент, когда Эрстед включал и выключал ток.

Говорят, что случайность — дополнение неизбежности. За несколько лет до опыта Эрстед писал: «Следует испробовать, не производит ли электричество… каких-либо действий на магнит…» Данное открытие, пожалуй, еще одна иллюстрация к словам Луи Пастера: «Случай помогает лишь умам, подготовленным к открытию». Так было положено начало новой отрасли физики — электромагнетизму.

«Памфлет» Эрстеда с описанием опыта попал к французу Араго. Тот повторяет опыт и докладывает о новом явлении 4 сентября 1820 года на заседании академии в Париже. Доклад слушает Ампер. Он чувствует, что пришел наконец миг, которого он неосознанно ждал всю жизнь. Две недели напряженной работы, и его имя вошло в историю. Все мы знаем, что ампер — единица измерения электрического тока. Именно Ампер первым произнес слова «сила тока». Но не в том главная его заслуга. «…Я свел все магнитные явления к чисто электрическим эффектам» — эти слова Ампера сохранились в протоколе заседания академии от 18 сентября 1820 года. Ампер показал, что два проводника, по которым течет электрический ток, притягиваются или отталкиваются подобно магнитам. А катушки с током взаимодействуют друг с другом как настоящие магниты. Он определил и направление действия электромагнитной силы в своем знаменитом «правиле пловца»: «Если дана проволока и направление идущего по ней тока, то следует представить себе наблюдателя, плывущего вместе с током и обращенного лицом к стрелке, тогда северный полюс стрелки отклонится в ту сторону, где находится левая рука наблюдателя». Так родилась электродинамика Ампера, сводящая все магнитные явления к электрическим.

Прошло 11 лет, и англичанин Майкл Фарадей решил обратную задачу: получил электричество с помощью магнита. 17 октября 1831 года он, быстро вдвигая намагниченный железный сердечник в катушку, убедился в том, что в какой-то момент времени в цепи катушки возникает импульс тока. Вот как писал сам Фарадей: «Я взял цилиндрический магнитный брусок и ввел один его конец в просвет спирали из медной проволоки, соединенной с гальванометром. Потом я быстрым движением втолкнул магнит внутрь спирали на всю его длину, и стрелка гальванометра испытала толчок. Затем я также быстро вытащил магнит из спирали, и стрелка опять качнулась, но в противоположную сторону. Качания стрелки повторялись всякий раз, как магнит вталкивался или выталкивался. Значит, электрическая волна возникает только при движении магнита, а не в силу свойств, присущих ему в покое».

До Фарадея такие же опыты проводил Ампер. Но он работал без помощника. Пока он после вдвигания сердечника шел в другую комнату (во избежание ошибок, связанных с сотрясением приборов, они были разнесены в разные комнаты), ток, возникавший только во время движения магнита, уже исчезал. Так Ампер пропустил открытие электромагнитной индукции.

Независимо от Фарадея примерно в то же время индукцию наблюдал американец Джозеф Генри, преподаватель гимназии в Олбани. Генри проводил опыты с электромагнитами, в конструировании которых достиг больших успехов. «Мне следовало напечатать это раньше, — сокрушался он впоследствии. — Но у меня было так мало времени! Хотелось свести полученные результаты в какую-то систему». Фарадей же отчеты о своих опытах публиковал регулярно.

Налицо была явная связь между электричеством и магнетизмом: электрический ток создает магнитное поле, а движущийся магнит создает электрическое поле.

Когда Фарадей продемонстрировал английскому королю Георгу IV свой опыт, тот, нахмурившись, спросил:

— Почему ваше изобретение не приносит практической пользы?

— Ваше величество, — ответил физик, — а какую пользу приносят дети, только что появившиеся на свет?

Фарадей интуитивно чувствовал, какую пользу в будущем принесет его открытие. Интересно, что уже у Фарадея возникла мысль о бегущих электрической и магнитной волнах. Но мысль была тогда так кощунственна, что он не осмелился опубликовать ее. Правда, приоритет свой все-таки решил зафиксировать. 12 марта 1832 года он передал для хранения в архив Королевского общества конверт в запечатанном виде с надписью «Новые воззрения, подлежащие в настоящее время хранению в архивах Королевского общества».