Добавить в цитаты Настройки чтения

Страница 69 из 92

При столь высокой разрешающей способности удается получить изображения большинства атомов химических элементов. Таким образом химик имеет возможность наблюдать непосредственно молекулы и их комплексы. Вероятно, тайная мечта «увидеть» химическую реакцию волновала почти каждого исследователя, занимавшегося данной областью науки. Арон Клуг, вплотную приблизившийся к этой заветной цели, был удостоен в 1982 г. Нобелевской премии по химии. Его исследования хроматина пролили луч света на тончайшую структуру генетического аппарата. Это, несомненно, ускорит исследования функции генов и, возможно, сыграет решающую роль в выяснении природы рака и других заболеваний. Рассматривая микромир в электронный микроскоп, специалисты по молекулярной биологии смогут лучше понять,как работает клеточная машина.

XIV. НЕЙРОФИЗИОЛОГИЯ

В последние десятилетия XIX в. были достигнуты решающие успехи в изучении строения клеток тканей мозга. Начало этим открытиям положил Камилло Гольджи, профессор из Павии, который создал очень эффективный метод специфического окрашивания нервных клеток. Работая, в самых, различных областях экспериментальной медицины, он решил использовать для окрашивания, препаратов ткани, мозга нитрат, серебра. Соли серебра, селективно поглощаясь нервными клетками, придавали им черный, цвет. Это позволяло хорошо видеть различные отростки нервной клетки, благодаря чему итальянский ученый смог описать мелкие ответвления (дендриты) и крупный отросток (аксон), осуществляющие связь нервных клеток с другими клетками организма.

Гольджи никогда, не придавал, особого значения этому открытию, и даже не известно точно, когда оно было, сделано. Метод окрашивания был принят на вооружение другими учеными, и микроанатомия мозга достигла большого прогресса. В 1891 г. Вильгельм Вальдейерввел, понятие нейрона как основного элемента нервной системы. Согласно его представлениям: нейрон — это функциональная единица, состоящая из тела нервной клетки и отростков, которыми она связывается с другими клетками. Эта теория утвердилась в науке ценой больших усилий. Одним из самых убежденных её противников был Гольджи, хотя теория возникла и развивалась в значительной степени благодаря его экспериментальным методам. Новые данные в подтверждение идей Вальдейера были получены в результате усовершенствования методов приготовления препаратов. Главная заслуга в этом принадлежит испанскому гистологу Сантьяго Рамон-и-Кахалю, который усовершенствовал методы Гольджи. Наряду с нитратом серебра он стал использовать и хлорид золота. Этим соединением он пропитывал даже тончайшие отростки нейронов, делая их видимыми. Так, из хаоса переплетенных нитей и клеток ткани мозга вырисовывалась более ясная картина.

Гольджи описал несколько типов нервных клеток и их отростков. Он установил, что аксоны клеток мозга соединяются со спинным мозгом, осуществляя таким образом связь мозга с телом. Рамон-и-Кахаль провел обширные наблюдения структуры различных частей мозга и нервной системы, нередко исследуя структуры мозга на эмбриональной стадии развития, когда они имеют более простое строение, и это позволило лучше разобраться в устройстве мозга. Оба ученых приобрели широкую известность в начале нашего столетия, их кандидатуры неоднократно выдвигались на Нобелевскую премию. Однако против этого было немало возражений, при этом, в частности, ссылались на то, что Гольджи уже десятилетия не занимается названными проблемами и, в сущности, более известен теперь своими работами по субклеточным структурам. Вместе с тем Рамон-и-Кахаль по-прежнему активно работал и, безусловно, заслуживал высокой награды. Но ведь создателем метода был не он. Перед Нобелевским комитетом при Каролинском институте (который в первые годы более жестко следовал завещанию Альфреда Нобеля) встала сложная дилемма. С одной стороны, некоторые считали, что награждение Гольджи будет первым случаем присуждения премии как своего рода пенсии. С другой стороны, нельзя не отметить заслуги этих исследователей. Наконец, несмотря на колкие реплики, в 1906 г. был достигнут компромисс. Гольджи и Рамон-и-Кахаль получили Нобелевскую премию по физиологии и медицине в знак признания их работ по исследованию структуры нервной системы.

Однако от выяснения структуры мозга до разгадки его функций было еще очень далеко. Эта задача выглядит отдаленной перспективой и сегодня, несмотря на огромные успехи нейрофизиологии. Как это обычно происходит в науке, исследователи начали с самого простого. Они поставили перед собой цель: понять, как действуют нервные волокна, проводящие импульсы.





Биоэлектричество как явление стало известно еще в конце XVIII в. благодаря опытам Луиджи Гальвани. В начале XIX в. оно было исследовано его соотечественниками Леопольдом Нобили и Карло Маттеучи. К 1843 г. Эмиль Дюбуа-Реймон уже располагал достаточно совершенной техникой для изучения импульсов, идущих по нервному волокну. Он показал, что это импульс отрицательного электричества. Спустя несколько десятилетий Аларику Фритьофу Холмгрену удалось «подслушать» сигналы нервов с помощью телефона. Эти исследования позволили собрать данные о биоэлектрических явлениях. Генри Пикеринг Боудич установил, что функции нерва, в частности его возбуждение, осуществляются по закону «все или ничего», иначе говоря, сигнал возникает лишь когда возбуждение достигает определенного порога. Эти результаты получили дальнейшее подтверждение в начале XX в. в работе Кейта Лукаса. Арчибальд Вивьен с сотрудниками исследовали выделение нервом тепла, показав, что при прохождении нервного импульса резко усиливается обмен веществ нервных клеток.

Эти опыты были поставлены в Кембриджском университете, где существовала крупная школа физиологов. После первой мировой войны туда вернулся из госпиталя молодой исследователь, который приступил к изучению нервных путей с помощью самой совершенной техники того времени. Эдгар Дуглас Эдриан, используя электронные усилительные лампы, которые обеспечивали тысячекратное усиление сигнала, смог уловить импульсы единичных нервных волокон — отростков нейрона. Он получил интересные данные о характере и распределении импульсов, которые впоследствии оказались очень ценными при изучении механизма возникновения биоэлектрического импульса.

Эдриан достиг больших успехов в исследовании проводящих путей нервных импульсов, особенно органов, чувств. За свои работы он был удостоен Нобелевской премии по физиологии и медицине. Вместе с ним был награжден. один из ветеранов нейрофизиологии — Чарлз Скотт Шеррингтон, исследовавший нейронный механизм рефлексов. Оба ученых получили премию за исследование функции нейронов. Эту проблему они рассматривали с разных сторон, взаимно дополняя результаты друг друга.

Технические усовершенствования обеспечили возможность более глубокого изучения функций нервов — проводников биоэлектричества. После работ Германа Гельмгольца, который в конце прошлого века измерял скорость прохождения нервного импульса, в нашем столетии исследования этого рода продолжали бурно развиваться. Густав Йотлин установил, что толстые волокна проводят импульсы с большей скоростью. Эдриан открыл, что импульсы выделяются сериями, причем их частота повышается с увеличением силы раздражения. Это наводило на мысль, что нервы, подобно кабелям, состоят из пучков волокон-проводников. Джозефу Эрлангеру и Герберту Спенсеру Гассеру выпало счастье первыми установить сложную структуру нерва. В 1920 г. на конгрессе инженеров в Чикаго, демонстрировались новые радиолампы-усилители и усовершенствованные электронные осциллографы, которые спустя два десятилетия после их изобретения Карлом Фердинандом Брауном достигли довольно высокого уровня. Записав с помощью этой техники нервные импульсы с весьма высокой точностью, Эрлангер и Гассер пришли в 1924 г. к выводу, что их сложный характер можно довольно легко объяснить, если принять, что сам нерв состоит из нескольких типов волокон, проводящих электрические импульсы с разной скоростью. Эти двое американских ученых, работавшие в известном Институте Джорджа Вашингтона в Сент-Луисе (шт. Миссури), установили наличие трех типов волокон, которые были обозначены первыми тремя буквами латинского алфавита. Наиболее толстые волокна типа А проводят импульсы со скоростью 5—100 м/с, волокна типа В — со скоростью 3—14 м/с и волокна типа С — со скоростью 0,3—3 м/с.