Добавить в цитаты Настройки чтения

Страница 41 из 92

В 1945 г. Норриш привлек к работе молодого сотрудника Джорджа Портера, специалиста по электронике, который во время второй мировой войны занимался радиолокацией. Год спустя Портеру пришла идея использовать для стимулирования фотохимических реакций сверхкороткие световые импульсы. Было создано нечто вроде «фотомолнии», которая позволяла получать мощность в 600 МВт (мегаватт) за одну миллионную долю секунды. Спектроскоп, с помощью которого проводилось исследование вторичного излучения молекул и радикалов, был дополнен фотоэлектронным умножителем. Это устройство усиливало свет в десятки тысяч раз и давало возможность регистрировать отдельные фотоны.

Вооруженные столь мощной техникой, Норриш и Портер приступили к исследованиям чрезвычайно быстро протекающих реакций. Скоро они довели интервал исследования до миллиардных долей секунды (наносекунд). Сверхбыстрая спектроскопия оказалась исключительно ценным методом исследования механизмов химических реакций. Сейчас вместо «фотомолнии» Норриш и Портер используют лазеры в тысячи раз большей мощности.

К началу 50-х годов химики располагали методами исследования сравнительно медленных реакций (классическая химическая кинетика) и сверхбыстрых (спектроскопия). Пробел между ними был ликвидирован благодаря исследованиям Манфреда Эйгена из Гёттингенского университета.

В 1951 г. его коллеги, Конрад Тамм и Гюнтер Кунце, изучали поглощение ультразвука в морской воде. Выяснилось, что на некоторых частотах поглощение происходит значительно сильнее, нежели на других. Оказалось, что это связано с химическим составом морской воды. Продолжив исследования, Эйген установил, что поглощение вызывается в основном сульфатом магния, который поглощал ультразвук частотой в 100 кГц (килогерц). Эксперименты показали, что молекулы этого вещества сто тысяч раз в секунду разлагаются на ионы и восстанавливаются, чем и обусловлена частота поглощения ультразвука. Это открытие позволило разработать простой метод стимуляции быстрых изменений в молекулах.

Завершив исследования с ультразвуком, Манфред-Эйген начал искать другие способы изучения химических реакций. В частности, он применил электрические им-»1. пульсы высокого напряжения и получил интересные результаты. В период 1953—1963 гг. Эйген сконструировал множество различных приборов для исследования быстропротекающих химических процессов. Обобщая свои исследования, он создал своеобразную «периодическую систему» реакций: в ней скорость взаимодействия связывается с радиусом ионов и величиной их электрического заряда.

Исследования Роналда Норриша, Джорджа Портера и Манфреда Эйгена, как и многих других ученых, обеспечили большой прогресс в изучении механизма, химических реакций. За крупные достижения теоретического и методологического характера эти трое ученых были удостоены в 1967 г. Нобелевской премии по химии.

Еще в начале нашего столетия исследования фотохимических реакций привели к удивительному открытию. В 1913 г. известный химик Макс Боденштейн установил, что при взаимодействии водорода и хлора один поглощенный фотон света вызывает образование около ста тысяч молекул хлороводорода. Так были открыты цепные реакции. Через десять лет И.А. Кристиансен и Г.А. Крамерс показали, что цепные реакции наблюдаются и при некоторых взаимодействиях, не связанных со светом. Они ввели также понятие разветвленных цепных реакций.

Понятие цепной реакции было впоследствии заимствовано физиками для описания ядерных процессов. По существу, в физике этот термин более известен, нежели в химии, так же как и термин «плазма», взятый из биологии.

В 1926 г. советские ученые Ю.Б. Харитон и З.Ф. Валта опубликовали результаты своих исследований реакций между парами фосфора и кислородом. Как при низком, так и при высоком давлении эта реакция не происходила. Но в интервале средних давлений происходил взрыв. Результат был настолько неожиданным, что некоторые специалисты считали его ошибочным. Правильное объяснение этому явлению дал советский химик Николай Николаевич Семенов. Он показал, что здесь, как и в ряде других случаев, наблюдается разветвленная цепная реакция. Примерно в то же время к подобным выводам пришел и английский ученый Сирил Норман Хиншелвуд.

Эти открытия были с энтузиазмом встречены в научных кругах. Одно время даже считалось, что все реакции являются цепными. В этой путанице навел порядок Хиншелвуд. Он открыл вещества, которые могут реагировать двояко. Теория цепных реакций в значительной степени была разработана Н.Н. Семеновым. В 1934 г. он написал монографию, которая была переведена на немецкий и английский языки и приобрела широкую известность. Советский ученый объяснил большое число явлений, происходящих при взрывных реакциях и процессах горения. Эти исследования сыграли очень большую роль при разработке двигателей внутреннего сгорания и в других областях.





Открытие и исследование цепных реакций явилось большим успехом химической теории и практики. За свои работы академик Н.Н. Семенов дважды был удостоен Государственной премии СССР, он дважды Герой Социалистического труда, награжден многими правительственными наградами. Он избран иностранным членом Лондонского королевского общества и многих других академий мира. В 1956 г. Н.Н. Семенов за исследование цепных реакций был удостоен Нобелевской премии по химии.

Вместе с ним был награжден и Сирил Хиншелвуд, также внесший большой вклад в изучение цепных реакций. Английский ученый применил эти идеи в биохимии, в частности при исследовании бактериальной клетки и влияния на нее антибиотиков.

Химический анализ

Одной из основных задач химии является анализ веществ (определение их химического состава). Еще в древности были известны различные способы качественного анализа руд, особенно благородных металлов. Развитие аналитических методов в химии тесно связано с развитием самой этой науки, потому что состав соединений определяется с помощью различных специфических реакций, большинство из которых было открыто совершенно случайно.

Значительным этапом в развитии химического анализа явилось открытие и выделение в чистом виде химических элементов. Некоторые из них были известны с глубокой древности, другие удалось выделить и исследовать лишь благодаря созданию более совершенных экспериментальных методов. Огромных успехов эта область химии достигла на рубеже XVIII—XIX веков. Менее чем за столетие были открыты и выделены в чистом виде все стабильные химические элементы. Единственное исключение составляли благородные газы, которые в силу своей химической инертности были открыты лишь с помощью физических методов, а также элемент фтор, который — хотя он и был издавна известен — никак не удавалось получить в чистом виде.

Еще в начале XVI в. Георг Агрикола (Бауэр) описал минерал, который легко плавится, он назвал его «флюор» (что в переводе с латыни значит «текучий»). В этом минерале, называемом сегодня флюоритом (плавиковым шпатом), немецкий химик Андреас Сигизмунд Маргграф и швед Карл Вильгельм Шееле открыли неизвестное вещество, обладающее исключительной химической активностью. В 1810 г. Анри Ампер — вслед за Агриколой — назвал новый элемент флюором, но в 1816 г. переименовал его во фтор (от греческого «фторос», что значит «разрушительный»).

Длительное время фтор не удавалось выделить в чистом виде. Лишь в 1886 г. французский химик Анри Муассан сконструировал специальный аппарат, в котором получил чистый фтор электролизом плавиковой кислоты. Таким образом, было положено начало систематическому изучению этого элемента и его соединений.

В 1892 г. Муассан построил еще один аппарат — электродуговую печь, с помощью которой провел интересные исследования свойств веществ. Это устройство, в котором создавались исключительно высокие температуры, состояло из двух известковых блоков, выдолбленных внутри так, чтобы было место для тигля. Через два отверстия вставлялись графитовые электроды, и при пропускании электрического тока температура в дуге достигала 3500°С. Электропечь Муассана дала возможность получить и исследовать большое число различных соединений.