Добавить в цитаты Настройки чтения

Страница 26 из 92

Занимаясь техническим усовершенствованием своей установки, Маркони постепенно пришел к выводу, что для радиопередатчика необходимы заземление и антенна. Увеличивая антенну, он непрерывно увеличивал и дальность передачи: от 2,5 км в 1895 г. она возросла в 1897 г. до 18 км. В это время Маркони перебрался в Англию и подал заявку на патент; в 1897 г. он получил патент на применение электромагнитных волн для беспроволочной связи (А.С. Попов свое открытие не патентовал). Получив финансовую поддержку правительства, Маркони осуществил в 1902 г. связь через Атлантический океан — на расстояние в 3400 км. Это был успех не только итальянского изобретателя. Профессор физики Страсбургского университета Карл Фердинанд Браун изобрел в 1898 г. колебательный контур значительной емкости и с малым затуханием. Вскоре после этого он изготовил кристаллический детектор, который быстро нашел применение в первых радиоприемниках. Браун изобрел несколько типов антенн и предложил много других технических усовершенствований, которые способствовали развитию радиосвязи.

В начале нашего века существование радио стало фактом. В 1909 г. Нобелевский комитет по физике принял решение о награждении Маркони и Брауна. Это было признанием больших технических достижений, которые стали возможны благодаря теоретическим открытиям, сделанным в предшествующие несколько десятилетий. К сожалению, работы А.С. Попова — истинного изобретателя радио — остались малоизвестными на Западе. Он умер в 1906 г., так и не попав в поле зрения Нобелевского комитета.

В то время, когда Маркони и Браун были удостоены Нобелевской премии, в Кембридже работал Оуэн Уилланс Ричардсон. В знаменитой Кавендишской лаборатории он исследовал явление термоэлектронной эмиссии (испускание электронов нагретыми телами). Ранее Дж. Дж. Томсон установил, что металлы при сильном нагревании испускают электрически заряженные частицы. В 1901 г. Ричардсон вывел термодинамическую формулу зависимости плотности термоэлектронной эмиссии от температуры поверхности катода. Эти исследования довольно скоро перестали быть чисто теоретическими и нашли широкое применение при конструировании электронных ламп для радиотехники. Между прочим, первая электронная лампа, была создана самим Ричардсоном в 1901 г. — в известном смысле это можно рассматривать как дату рождения современной электроники.

G того времени радиотехника и радиосвязь стали бурно развиваться, и через 20 лет после изобретения радио появилось телевидение. Кинескоп, который, создает телевизионное изображение, является отдаленным потомком электронно-лучевой трубки, созданной Брауном в 1897 г. Впечатляющие успехи радио и телевидения вновь привлекли внимание Нобелевского комитета по физике, и по решению его членов в 1928 г. Нобелевская премия была присуждена Ричардсону.

На протяжении нескольких, десятилетий электронные лампы считались вершиной достижений инженерной мысли. Все более сложные их модификации, которые связывались во все более сложные системы, и привели в конце концов в 1946. г. к появлению первого компьютера. Два года спустя открытие, сделанное, в американской научно-исследовательской фирме «Белл телефон лабораторией, коренным образом изменило положение. Джон Бардин и Уолтер Браттейн открыли транзисторный эффект и изготовили первый полупроводниковый прибор — транзистор. Одновременно теорией этого процесса занимался сотрудник, той же лаборатории Уильям Брэдфорд Шокли.

Даже самые первые, еще очень несовершенные транзисторы были во всех отношениях значительно удобнее электронных ламп и быстро начали их вытеснять. Теория транзисторного эффекта сама по себе имела большое, значение для теоретической физики. По этим причинам Нобелевский комитет принял решение присудить Нобелевскую премию по физике за 1956 г. трем названным ученым — за исследования полупроводников и открытие транзисторного эффекта. За прошедшие три десятилетия полупроводниковая техника принципиально усовершенствовалась и привела к возникновению современной микроэлектроники. Без сомнения, изобретение транзистора явилось одним из крупнейших открытий нашего века, которое сделало возможной автоматизацию многих процессов и внесло коренные изменения в жизнь людей. Это во многом было предопределено изобретением радио и развитием радиотехники. Исследования радиоволн привели также к интересным открытиям, имеющим серьезные последствия.

В первое время после изобретения радио выдвигались самые различные гипотезы о распространении радиоволн. В 1902 г. английский физик Оливер Хевисайд предположил, что в верхней части атмосферы имеется ионизированный слой, отражающий радиоволны. Это дает возможность принимать в Европе радиосигналы, например, из далекой Новой Зеландии. Радиоволны, последовательно отражаясь от атмосферы и земной поверхности, обходят вокруг всего земного шара. Однако это относится только к радиоволнам определенного диапазона. Ультракороткие радиоволны не отражаются от ионизированного слоя атмосферы, и поэтому телевизионный сигнал можно принимать лишь в зоне прямой видимости.

В 1924 г. было убедительно доказано существование ионосферы и определено расстояние до нее от поверхности Земли. Это сделал английский физик Эдуард Виктор Эплтон из Кавендишской лаборатории, основываясь на исключительно простой идее. Исходя из того, что излучаемый радиосигнал и сигнал, отраженный от высоких слоев атмосферы, проходят различное расстояние, он предположил, что между ними должна происходить интерференция — наложение волн, в результате чего волны взаимно усиливают или гасят друг друга. Это явление хорошо знакомо радиослушателям: иногда радиопередачи хорошо принимаются с больших расстояний, а порой мы слабо слышим даже близкие радиостанции.





Измерив силу сигнала, Э. Эплтон путем простых математических расчетов установил, что ионосфера находится на высоте около 90 км. К 1927 г. он изучил различные ионосферные слои. Обобщив многочисленные данные, Эплтон разработал магнитно-ионную теорию высоких слоев атмосферы. Согласно этой теории, ионы образуются под действием солнечного света и космических лучей и сильно влияют на магнитное поле Земли. Именно этими факторами определяются структура ионосферы и качество радиосвязи.

Исследования Э. Эплтона имели важное значение для радиосвязи, а также для физики земной атмосферы и околоземного пространства. За свой вклад он получил в 1947 г. Нобелевскую премию по физике.

Радиоастрономия

Оказалось, что беспрепятственное прохождение ультракоротких волн через земную атмосферу имеет исключительно большое значение для современной астрофизики. Сегодня исследование небесных тел с помощью радиотелескопов — это, по существу, еще одно «окно» во Вселенную. Как и многие другие открытия, радиоастрономия родилась также случайно.

В 1929 г. фирма «Белл телефон лабораторис» поручила молодому инженеру Карлу Янскому исследовать помехи на трансатлантическом канале радиосвязи. В его распоряжение был предоставлен чувствительный радиоприемник, который затем дополнили большой антенной для определения направления шумов. После длительного наблюдения выяснилась в общих чертах картина радиопомех. Большинство из них, как оказалось, вызываются грозами. Однако на эти помехи накладывался еще какой-то загадочный радиошум, идущий с неба.

Янский прежде всего установил, что интенсивность этого «шума» изменяется с периодом в 23 ч 56 мин (за это время делают полный оборот звезды на небесной сфере). К декабрю 1932 г. он уже мог сообщить, что максимальная интенсивность космического излучения наблюдается в той части небесной сферы, которая, по данным астрономов, находится в центре Галактики. Это открытие было встречено с большим интересом широкой общественностью, но, как ни странно, специалисты не обратили на него внимания. Единственным человеком, который занялся изучением этого вопроса с точки зрения астрономии, был американский радиолюбитель Гроут Ребер. В 1936 г. он собственноручно изготовил почти десятиметровый радиотелескоп-рефлектор и к 1944 г. составил первую радиокарту неба. На протяжении почти десятилетия этот исследователь-любитель оставался единственным радиоастрономом в мире.