Страница 65 из 67
Венера предъявляет авиаконструкторам совершенно иные требования. Планета укутана плотным слоем облаков, и над этим слоем летательные аппараты достаточно хорошо справляются со своей задачей. Мы уже знаем это, потому что в 1986 г. совместная советско-французская экспедиция успешно сбросила в венерианскую атмосферу два гелиевых аэростата. Аэростаты устроились на высоте около 55 км над поверхностью планеты и передавали ученым данные о местной погоде. Поскольку Венера располагается ближе к Солнцу, чем Земля, мы знаем, что будущие воздушные суда смогут без труда получать энергию от солнечных элементов. Среди конструкций венерианских аэропланов есть и обычные, и совершенно невероятные. Мой любимый проект — «твердотельный» самолет; по существу, это единственное фотогальваническое крыло, сделанное из искусственной мышечной ткани, которое будет парить в верхних слоях венерианской атмосферы, подобно ястребу или орлу!
Подобраться ближе к поверхности планеты непросто. Облака Венеры состоят из чистой серной кислоты. Большая часть атмосферы — углекислый газ, и его здесь так много, что атмосферное давление на поверхность планеты превосходит земное в девяносто два раза. На поверхности Венеры атмосферное давление просто раздавило бы человека в лепешку. Другой эффект углекислого газа в атмосфере — тепло, которого здесь очень много. В пасмурный день — а дни на Венере всегда пасмурные — поверхность планеты прогревается до 460 °C; там жарче, чем на поверхности Меркурия. Лаборатория реактивного движения NASA в Пасадене проектирует аэробот, который будет просто скидывать зонды на поверхность и принимать информацию, которую они успеют сообщить, прежде чем температура и давление выведут их из строя. Другой проект предусматривает создание аэростата с двухфазным рабочим телом на гелии и воде, который будет нырять к поверхности планеты за образцами, а затем подниматься и запускать собранные образцы на маленьких ракетах на орбиту, где их будет подбирать орбитальный аппарат.
К счастью, в большинстве своем иные миры, которые мы собираемся исследовать, гораздо менее враждебны к человеку, чем Венера. Титан, самый крупный спутник Юпитера, имеет вдвое более плотную атмосферу, чем Земля, и состоит в основном из азота и нефтехимических соединений. Летательный аппарат мог бы без проблем опуститься на поверхность этой луны в поисках сложных органических соединений, которые, по мнению ученых, могут там скрываться. Джулиан Нотт — аэронавт, пролетевший в 1975 г. на тепловом аэростате над пустыней Наска, — считает, что в тамошних идеальных условиях воздушный шар сможет летать десятилетиями. И это не пустые рассуждения: последние пять лет Джулиан работает вместе с Лабораторией реактивного движения над подробным проектом надувных зондов для Титана.
Юпитер тоже доступен для исследования из верхних слоев атмосферы. Юпитерианские летательные аппараты, естественно, будут совершенно не похожи на своих марсианских родичей. Юпитер слишком далеко от Солнца, чтобы полагаться только на солнечную энергию. Вместо этого им придется получать энергию из инфракрасного излучения самой планеты-гиганта. Кроме того, юпитерианская атмосфера — это по большей части водород, так что аэростаты, очевидно, нельзя наполнять ни водородом, ни гелием. В юпитерианской атмосфере смогут летать только тепловые аэростаты — монгольфьеры. Не правда ли, чудесно, что технология 1783 г. может когда-нибудь оказаться полезной там, в далеких просторах Солнечной системы?
Мы возвращаемся домой, медленно падаем сквозь стратосферу вниз, на землю, вращаясь как кленовое семя. Здесь нет бурь, нет холодных и теплых атмосферных фронтов; здесь вообще нет погоды. В стратосфере теплый воздух всегда движется поверх холодного, а температура стабильно падает до жуткого холода — примерно до -60 °C. На этих морозных высотах нетрудно представить, что жизнь на Земле течет так же спокойно, стабильно и предсказуемо.
Однако где-то между пятнадцатью и восемью километрами над поверхностью происходит что-то странное. Чем ниже мы опускаемся, тем жарче становится. Нижние слои атмосферы греются от земли. Нагреваясь снизу, как вода в кастрюле на плите, они перемешиваются и закручиваются. Массы теплого воздуха сквозь холодные слои прокладывают себе путь вверх, а тяжелые пласты холодного воздуха устремляются вниз, к поверхности планеты, бешеные ветры соприкасаются друг с другом, заряжая атмосферу электричеством. На ночной стороне земного шара сверкают молнии. Бурное дно атмосферного океана образует тропосферу. Здесь живет погода. И в какой-то степени — мы, по крайней мере большую часть времени. В этом густом и бурлящем воздухе разворачиваются наши крылья: SpaceShipTwo становится обычным планером.
Приближается посадка.
Вернувшись назад, в непогоду, вновь ощутив на себе действие дождя, тумана и метелей нашего неверного повседневного мира, нельзя не задуматься: что дальше? Сбудутся ли наши мечты? Сможем ли мы на самом деле составить карты иных миров, научимся ли добывать руды на астероидах и получать от Солнца неограниченную энергию? Предсказывать будущее — неблагодарная задача. Даже погоду трудно понять до конца. Метеоролог Боб Райс помнит время — совсем недавнее, 1970-е гг., — когда метеоролог мог предсказать погоду в лучшем случае на сутки вперед. На составление прогноза на 24 часа уходило столько времени, — вспоминает он, — что на 48-часовой прогноз его практически не оставалось. Когда же мы переходили к 72-часовому прогнозу, мы могли вместо расчетов просто метать дротики в мишень.
Прогнозирование поведения атмосферы с тех пор несколько продвинулось. А вот человеческая погода — как бы мы ни старались, как бы ни думали, сколько бы наук ни изучили, мы практически не приближаемся к пониманию ее механизмов. Сами для себя мы остаемся величайшей загадкой. Сможем ли мы, как говорил Джо Киттингер, ужиться с космосом? Научимся ли жить в космосе? Или останемся на земле, и человеческая цивилизация рухнет под собственной тяжестью? Вылупимся ли мы из яйца Земли или так и умрем в скорлупе?
Мир не умеет сдерживать удары. Если мы проживем ближайшие сто лет неверно, мы погибнем. Это так же точно, как то, что наш космический корабль разбился бы, если бы его пилот не был умным, преданным и внимательным; если бы посадочная полоса не была готова, хорошо освещена и хорошо подготовлена.
Космопорт под нами похож на громадный немигающий глаз. День и ночь он вглядывается в звезды.
В наш век чудесных изобретений все вдруг уверовали, что в чьем-то гениальном мозгу дремлет решение великой проблемы воздушной навигации. Вместе с этой верой у людей есть надежда на то, что еще при их жизни гений сделает свое открытие, и одновременно страх, что он проживет бесцельно и сгинет, так и не узнав, какие чудеса таились в его мозгу. Мы все знаем, что по воздуху можно плавать — а потому спешите поднять паруса — ну доставьте нам удовольствие — успокойте нас. А затем, при наличии железных дорог, пароходов, трансокеанского телеграфа, воздушных судов — и ведь все это движется и гарантированно навеки принадлежит нам, — останется одно-единственное чудо, свершения которого надо будет добиваться, — а именно коммерческая или по крайней мере телеграфная связь с жителями Юпитера и Луны. Я умираю от желания увидеть кого-нибудь из этих ребят! Мы увидим при своей жизни то, что увидим. Я полон веры, и вера моя безгранична.
Благодарности
Я хотел бы поблагодарить своего коллегу и друга Уилла Уайтхорна за его энциклопедические знания в аэрокосмической области и за его потрясающую память. Даг Миллард из лондонского Музея науки и Ридиан Дэвис из британского института кинематографии посвятили меня в самые страшные и невероятные аспекты современной аэронавтики, а Саймон Ингз помог мне извлечь эту историю из десятков тысяч других историй о человеческих мечтах, которые пока остаются нерассказанными. Спасибо также Эду Фолкнеру и Давине Рассел из Virgin Books.