Добавить в цитаты Настройки чтения

Страница 11 из 52



2

Влияние окружающей среды: почему у нас есть власть над собственным геномом

Метаморфоза

Когда мне было 13 или 14 лет, я принес в детскую биологическое чудо. На соседской живой изгороди я нашел гусеницу бражника сиреневого. Она была толстой и мясистой, чуть длиннее моего среднего пальца, и отливала насыщенным светло-зеленым цветом. По бокам у нее были типичные фиолетово-белые косые полоски, а на хвостовом конце — угрожающий на вид, но безобидный на деле рог, который есть у всех гусениц бражников.

Я посадил насекомое в террариум и следил за тем, чтобы у него не было недостатка в свежих листьях бирючины. Гусеница росла, росла и приблизительно через две недели стала длинной (почти с мою ладонь) и жутко толстой. Я уже привык к ее круглой приплюснутой голове с большими глазами, но однажды осенним вечером она зарылась в землю. Там она превратилась в какую-то твердую, на вид неживую, коричневую штуку со складками на концах. Это странное создание больше походило на какой-нибудь экзотический орех, чем на ярко-зеленую личинку насекомого. Нужно было очень внимательно присматриваться, чтобы заметить на чуть более мягких, гладких боках медленную, довольно ритмичную пульсацию. Единственный признак жизни.

Гусеница бражника окуклилась. Она продолжала жить, совсем не нуждаясь в пище. Внешне она казалась совершенно безжизненной, но внутри происходили невероятные изменения: чудесное превращение гусеницы в бабочку. Весь ее организм перестраивался. Исчезли рог и ложноножки, и как будто из ничего появились крылья, волоски, ножки и усики. Нервная система сформировалась заново, связала чрезвычайно развитые органы чувств с гораздо более сложным мозгом, а его, в свою очередь, с мышцами и органами в остальном теле.

В таком виде моя гусеница перезимовала. Я следил за тем, чтобы земля была влажной, — больше я ничего не мог сделать. А затем весенним утром свершилось чудо: проснувшись, я подошел к террариуму и увидел огромную бабочку — изящное серо-коричневое создание, украшенное щегольским и одновременно скромным рисунком из черных и розовых полос, с длинными грациозно расставленными усиками в черно-белую полоску. Когда позднее, в своей второй жизни, бражник, быстро взмахивая крыльями, зависал над цветком, подобно колибри, он вытягивал свой невероятно длинный сосущий хоботок, погружал его глубоко в чашечку цветка и как будто через соломинку пил нектар. Это существо великолепно владело искусством полета, оно было безукоризненно согласованным организмом, настоящим чудом природы.

Трудно поверить, что высокоспециализированные органы движения, чувственного восприятия и питания, даже план строения нервной и двигательной систем уже были заложены в той гусенице, которая казалась все-таки довольно примитивной. Простое червеобразное создание, умевшее лишь ползать и есть, в каждой своей клетке имело тот же набор генов, что и это великолепное существо, демонстрирующее неповторимое искусство полета и столь совершенно приспособленное к своему образу жизни.

Изменились лишь эпигенетические программы. За одну зиму в миллиардах клеточных ядер свершилась стремительная перестройка — трансформировались метильные и ацетильные группы, изменилась форма гистонов, выстроились РНК. После этого почти каждая клетка получила новую функцию — стала синтезировать совершенно новый набор белков, приобрела абсолютно иной образ.

Великим чудом метаморфозы бражник обязан не столько геному, сколько способности самым радикальным образом реорганизовать этот геном практически во всем организме. Превращение гусеницы в бабочку — настоящий шедевр эпигенетической системы.

Когда ученые стали лучше разбираться в подоплеке таких процессов, они поняли: судьба клетки определяется совместными усилиями эпигенома и генома. Генетическая и эпигенетическая информация хранится в молекулярной смеси, состоящей из ДНК и окружающих ее многочисленных разнообразных белков. Геном и белки функционируют как одна огромная библиотека: ДНК содержит тексты, а эпигенетические структуры выполняют функции библиотекарей, каталогов и указателей, распоряжающихся информацией и упорядочивающих ее.

Итак, в ДНК каждой клетки бражника содержатся генетические коды гусеницы и бабочки. А какую «монтажную схему» в конце концов выбрать, клетка решает с помощью своего второго, эпигенетического кода.



Эти знания заставляют задуматься: может быть, наше наследственное вещество тоже содержит гораздо больше, чем мы обычно из него извлекаем? Это вовсе не означает, что мы можем превратиться в бабочку. Но ни в коем случае нельзя недооценивать выгоду, которую можно извлечь из второго кода путем серьезного изменения образа жизни.

Эпигенетика дарит надежду, что и мы можем преобразиться, что у нас есть власть над собственным геномом. По всей вероятности, в генах большинства людей заключен потенциал здоровой долгой жизни и обаятельной личности. Нужно только найти способ разбудить его.

«Королевское желе» и его действие

Бабочка и гусеница демонстрируют, насколько огромным может быть различие между эпигенетическими программами. И все же факторы, запускающие изменения эпигенома клетки, часто весьма незначительны. Нагляднее всего — пример развития медоносных пчел. Самки появляются из яиц не как рабочие пчелы или матки, а как совершенно одинаковые личинки. На самом деле к этому моменту еще не решено, какая особь спустя время станет плодовитой и будет царить в улье, а какая не сможет откладывать яйца и всю жизнь посвятит уходу за личинками, обороне, строительным работам и сбору пропитания. Поначалу все женские личинки обладают генетическим потенциалом пчелиной матки.

Решение принимается через три дня после вылупления. До этого момента рабочие пчелы-няньки кормят каждого белого червячка в бесчисленных сотах легендарным секретом, выделяемым их верхнечелюстными железами, — маточным молочком, называемым также «королевским желе»[5]. Но затем поведение нянек меняется, и это имеет далеко идущие последствия. Для большинства личинок часть корма заменяется пыльцой и нектаром. За незначительным исключением. Его составляют те личинки, которые — по той или иной причине — избраны, чтобы стать матками и образовать новый рой. Вплоть до окукливания пчелы-няньки дают им самое лучшее, что у них есть, — маточное молочко.

Вещество, превращающее личинку в матку, состоит в основном из сахара и воды. Помимо этого оно содержит белки, аминокислоты, ряд витаминов группы В, например тиамин (B1), рибофлавин (В2), никотиновую и фолиевую кислоты, а также несколько микроэлементов. Правда, до сих пор не известно, какой именно компонент маточного молочка запускает процесс развития будущей продолжательницы рода — одно пока еще не установленное вещество или же особая композиция всей смеси.

Однако начиная с 2008 года биологам известно, что в этом деле замешана эпигенетика. Группа австралийских исследователей под руководством Роберта Кухарски и Рышарда Малешка из Канберрского университета превращала личинок в пчелиных маток вообще без маточного молочка. Они манипулировали моделью метильных групп на ДНК, определяющей, какой ген включить, а какой выключить.

Для этого у некоторых личинок исследователи уменьшили количество фермента ДНК-метилтрансферазы-3 (DNMT-3), который прикрепляет метильные группы к ДНК, и таким образом — степень метилирования наследственного материала. (Кстати, они использовали технику РНК-интерференции.) Больше двух третей особей превратились в маток, хотя их кормили точно так же, как будущих рабочих пчел. Видимо, маточное молочко каким-то образом мешает метильным группам выключать гены, по причине которых личинка превращается в матку. Это предположение было подтверждено и в результате подробной расшифровки пчелиного генома: в клеточных ядрах маток к ДНК было прикреплено значительно меньше метильных групп, чем у рабочих пчел. Следовательно, больше генов было доступно для считывания.

5

От фр. Gelée royale.