Добавить в цитаты Настройки чтения

Страница 72 из 93

Рубин является кристаллом окиси алюминия (Аl2O3), в которую добавлено небольшое число атомов хрома в качестве примеси (мы говорим допирование хромом[9]). Атом хрома теряет три своих электрона и становится ионом хрома, который замещает один из ионов алюминия в кристаллической решетке. Эти ионы хрома имеют серию энергетических уровней в видимой области (рис. 50), которые делают прозрачный и бесцветный материал окрашенным от розового до тёмно-красного, в зависимости от концентрации примеси. На рис. 50 показаны две серии уровней, которые настолько близки друг к другу, что практически сливаются в две непрерывные полосы. Эти две полосы имеют центры на длине волны 0,55 мкм (зеленая; эту полосу в спектроскопии обозначают 4F2) и на длине волны 0,42 мкм (фиолетовая; обозначенная 4F1) соответственно. Если кристалл облучается зеленым или фиолетовым светом, возбужденные ионы релаксируют на два промежуточных уровня, обозначаемых 2Е, за очень короткое время, вместо того, чтобы непосредственно спадать в основное состояние. Переход из зеленой и из фиолетовой полос на эти уровни происходит без испускания света, но дает избыток энергии решетке через колебания ее атомов. С этих очень близко расположенных уровней (обозначаемых 2A и Ē) ионы медленно спадают (за время порядка миллисекунды) на основной уровень, причем в это время испускается красный свет, который имеет очень узкое спектральное распределение (узкие линии) около 6928 А° (спектроскописты называют ее R2 линией) или 6943 A° (R1). Этот свет, испускаемый после освещения кристалла, называется люминесценцией. Наименование этих уровней и полос было предложено теоретиками согласно рассмотрению на основе теории групп, которое отражает определенные свойства симметрии соответствующих состояний. Это не представляет интереса в нашем случае.

Ирвин Видер из Исследовательских лабораторий Вестингауза занимался исследованием излучения, соответствующего узким линиям рубина, т.е. R линий. Он использовал лампу накаливания, свет которой поглощался и возбуждал обе зеленую и фиолетовую полосы рубина. Затем энергия передавалась на 2Ē уровень. Видер рассчитал, что эффективность этого преобразования энергии была около 1% (т.е. около одной сотой энергии, поглощенной в этих двух полосах, оказывается в виде красного света, испускаемого в R линиях). Если это так, то лишь один красный фотон получается на каждые 100 поглощенных фотонов, что, практически, закрывает возможность использования оптической накачки для получения лазера. Однако после исследования других материалов, Мейман решил выполнить более точные измерения для рубина, путем изучения спектроскопии ионов хрома в розовом рубине. Он обнаружил, что на самом деле, квантовая эффективность была очень высока. Эти и другие результаты точных исследований люминесценции составили предмет статьи, которая была направлена 22 апреля 1960 г. в журнал Physical Review Letters и была опубликована в июне того же года.

В этом исследовании Мейману помогал И. Д'Хейнес, который только частично был связан с фирмой и придерживался мнения своих руководителей Дж. Бирнбаума и Г. Лайона, высказывавших скептицизм относительно успеха.

В результате исследований было обнаружено распределение энергии в ионах хрома, которое мы описали и которое изображено на рис. 50, причем время жизни 2Ē уровней, оказалось около 5 мс. Это, относительно длинное, время жизни, в течение которого атомы остаются в метастабильном состоянии, и их последующий распад с испусканием излучения (радиационный распад) является ответственным за явление люминесценции рубина, т.е. явления, которое и дает материалу его красный цвет. Рубины, которые исследовал Мейман, относились к так называемым розовым рубинам, в которых концентрация ионов хрома составляет только около 0,05% по весу. Поэтому, хотя обе линии 6943 A° и 6928 А° красные, полная окраска получается розовой (отсюда и название). Измерения квантовой эффективности люминесценции, т.е. числа фотонов, испускаемых при люминесценции, по сравнению с числом поглощенных фотонов зеленого возбуждающего света, показали, что это отношение близко к единице. Это означает, что практически каждый поглощенный зеленый фотон приводит к испусканию одного красного фотона. Это результат опровергал данные Видера и делал возможным осуществление лазера.

Мейман рассчитал, что достаточно интенсивный зеленый свет может желательным образом заселить промежуточное состояние 2Ē. Это, в свою очередь, должно было изменить населенность основного состояния (уменьшить его населенность). Все эти результаты побудили его использовать рубин для первого лазеры и продолжить расчеты.

На этом этапе принципиальной проблемой было найти источник зеленого света, достаточно мощного, чтобы накачать атомы на верхний уровень. Грубо говоря, лампа излучает свет, как если бы она была черным телом с высокой температурой.

Предварительные расчеты показали, что требуется лампа с эквивалентной температурой черного тела 5000 К. Мейман начал свои расчеты с коммерчески доступными ртутными лампами, но убедился, что их характеристики на пределе. Тогда он вспомнил, что импульсные ксеноновые лампы имеют эквивалентную температуру 8000 К. Не было причин исключать работу лазера в импульсном режиме, так как во многих случаях импульсный источник был привлекательным.





Теперь мы можем легко понять динамику процесса, снова обращаясь к рис. 50. Освещение зеленым светом возбуждает некоторые ионы хрома с основного уровня (на рисунке он имеет спектроскопическое обозначение 4А2 и обозначен числом 1) в полосу уровней, обозначенную как 4F2 и числом 3. Отсюда ионы быстро, за доли микросекунды (путем передачи энергии при столкновениях с атомами решетки), переходят на уровень 2Ē, обозначенный числом 2. С него они возвращаются на основной уровень в течение ~ 5 мс, испуская красный свет.

Мейман измерил уменьшение числа ионов, остающихся на основном уровне после поглощения зеленого света на 5600 А°, путем наблюдения фиолетового света на 4100 А°, который поглощается на переходе от 4A2 на 4F1. За счет этого перехода энергия ионов хрома возрастает с основного уровня 1 в полосу, обозначенную 4F1. На образец рубина посылался интенсивный короткий импульс излучения зеленого света на 5600 А° и одновременно образец просвечивался фиолетовым светом на 4100 А°. Когда интенсивный импульс излучения на 5600 А° посылается на образец, излучение на 4100 А°, также посылаемое в это же время на образец, испытывает резкое увеличение (поглощение уменьшается), которое спадает за ~ 5 мс. Этот эффект легко объяснить. Импульс света на 5600 А°, который возбуждает ионы с основного уровня в полосу 4F2 уменьшает число ионов на основном уровне, которые можно возбудить светом на 4100 А° в полосу 4F1. Тем самым уменьшается поглощение фиолетового света. Только после ~ 5 мс, когда ионы возбужденные в полосу 4F2, пройдя уровень 2Ē, возвратятся на основной уровень, поглощение фиолетового света возвратится к первоначальному состоянию. Этот и другие эксперименты позволили Мейману рассчитать, что изменение населенности основного уровня в 3% вполне осуществимо.

Воодушевленный этим результатом, он модифицировал условия эксперимента, чтобы возбудить максимально возможное число ионов хрома с основного уровня 1 на уровень 2. Для этого он использовал рубин в виде цилиндра, окруженного спиральной импульсной лампой (лампой-вспышкой). Чтобы собрать побольше света на образец рубина, он поместил все в цилиндр с посеребренными внутренними стенками. Таким образом, около 98% света лампы отражалось от них на образец. После внимательного изучения каталога ламп-вспышек, выпускаемых для профессиональных фотографов фирмой Дженерал Электрик, он установил, что три из них, FT 503, FT 506, FT 634, в принципе годятся. Чтобы получить резонатор, он отполировал оба основания цилиндра рубина и сделал их грани параллельными. На них испарением в вакууме наносились слои серебра (получался эталон Фабри-Перо). Один из слоев имел максимальный коэффициент отражения, а другой имел некоторое малое пропускание для вывода излучения из резонатора. Цилиндр рубина имел длину около 2 см и диаметр несколько меньший 1 см, и полностью окружался спиралью импульсной лампы (рис. 51). Мейман выбрал самую маленькую лампу, FT 506. Через лампу разряжалась батарея конденсаторов, заряженная до нескольких киловольт. Напряжением на батарее определялась интенсивность излучения лампы- Когда энергия разряда была не слишком высока, через не полностью отражающую грань рубина проходил красный свет люминесценции, который можно было наблюдать глазом на экране. С помощью подходящего приемника (фотоэлемент или фотоумножитель) можно было также прослеживать изменение интенсивности этого света во времени, убеждаясь, что она затухает за характерное время ~ 5 мс, типичное для люминесценции. Однако когда энергия разряда достигала определенного значения, внезапно на экране наблюдалось интенсивное красное пятно диаметром около 1 см.

9

Вообще-то, “мы говорим” — легирование (OCR)