Добавить в цитаты Настройки чтения

Страница 41 из 93

Решение Маркони использовать для этих радиостанций коротких волн радикально изменило технологию. В 1928 г. Маркони был назначен президентом Итальянского Национального исследовательского совета (CNR). В 1932 г. он установил коротковолновую радиотелефонную связь между Ватиканом и летней резиденцией папы Кастель Гандольфо вблизи Рима. За свою активную деятельность Маркони в 1909 г. был награжден Нобелевской премией по физике вместе с немецким физиком К. Ф. Брауном (1850-1918), который кроме изобретения кристаллического диода и осциллоскопа, улучшил беспроволочные системы связи с помощью создания соответствующих схем. Маркони был президентом Итальянской академии, личным другом Муссолини и получил титул маркиза. Когда он умер, были устроены государственные похороны, и все радиостанции на Британских Островах объявили две минуты молчания.

Попов

В России использование радиоволн для связи было связано, независимо от Маркони, с профессором А. С. Поповым (1859—1906), который разработал один из первых приемников электромагнитных волн. Аугусто Риги писал: «Новые характеристики аппаратуры Попова для регистрации волн заключаются в использовании молоточка и звонка, управляемого электрическим током, для восстановления первоначального сопротивления когерера, а также использование вертикального проводника, позднее названого антенной».

Александр Попов родился (1859) в рабочем поселке на Урале в семье священника, и предполагалось, что он пойдет по стопам отца согласно семейной традиции. Вместо этого он поступил на физико-математический факультет Санкт-Петербургского университета, где блестяще защитил диссертацию по электрическим машинам. В 1883 г. он был приглашен в Кронштадт для преподавания в Минных классах Российского Флота. Эти классы организованы в 1874 г. и были наиболее прогрессивным российским институтом в области электротехники. Попов провел там 18 лет, удовлетворяя свои интересы в физической лаборатории и выполняя исследования в рамках курса обучения. Он стал признанным авторитетом в области электричества, и Российский флот много раз обращался к нему для решения практических проблем.

После его успехов он в 1901 г. был назначен профессором Электротехнического института в Санкт-Петербурге, а в 1905 г. был выбран его ректором. В начале XX в. ухудшились отношения России с Японией, и в 1904 г. разразилась Русско-японская война. 1905 г. был годом бурных политических событий. Забастовки, стачки и собрания проходили по всей стране. В декабре Правительство постановило среди других распоряжений запретить публичные собрания в помещениях института. Попов отказался исполнять этот приказ, направленный властями против студентов. В результате сильных волнений он тяжело заболел и скоропостижно скончался от инсульта в январе 1906 г.

После публикаций Герца в 1888—1889 гг. Попов заинтересовался волнами Герца и, зная о когерере, в начале 1895 г выполнил серию исследований, надежность результатов которых обеспечивалась использованием маленького молоточка, который срабатывал, когда ток протекал через устройство, и маленьким ударом восстанавливал первоначальные условия (рис. 26).

Рис. 26. Система Попова для детектирования электрических колебаний. Рисунок показывает расположение частей и электрические соединения между ними. (Из работы А.С. Попова «Аппаратура для обнаружения и регистрации электрических колебаний», Журнал Русского физико-химического общества, 1, 1-14(1896).)

Первая демонстрация этого приемника состоялась перед Физическим обществом Санкт-Петербурга 7 мая 1895 г. В то время Попов был преподавателем Минных классов, и его результаты не могли быть опубликованы по соображениям секретности.

Проводя свои эксперименты на открытом воздухе, Попов обнаружил, так же как Лодж и другие, что когерер реагирует на атмосферные электрические явления, и его чувствительность можно увеличить, если один из его концов соединить с вертикальной проволокой, связанной с воздушным шаром, или с громоотводом, а другой соединить с землей. Попов использовал это, чтобы построить специальный прибор («грозоотметчик») и установил его в Лесном институте Санкт-Петербурга, Он также публично продемонстрировал в 1896 г., эксперименты по связи, и установил свой грозоотметчик на знаменитой Нижегородской ярмарке. Там был в 1885 г. построен павильон достижений в области электричества и демонстрировалась электростанция с производимостью до 400 кВт. Грозоотметчик предупреждал о приближении грозы и позволял принять меры для защиты. Во время этой ярмарки Попов прочел об экспериментах Маркони и при поддержке Российского Флота возобновил свои эксперименты по связи. Однако его обязали опираться на зарубежных производителей, так как Россия не имела нужной промышленности. Парижский инженер и бизнесмен Евгений Дюкре (1844—1915), который первым во Франции построил устройства беспроволочного телеграфа, очень заинтересовался Поповым и в 1898 г. стал строить радиотелеграфные станции на основе его систем. Сотрудничество Дюкре—Попов поддерживалось политическим сближением России с Францией, начавшимся в конце XIX в. В период 1899—1904 гг. Компания Дюкре получила несколько заказов от Российского Флота. Однако эта компания была слишком мала и слаба, и Русский Флот во время русско-японской войны использовал системы связи, сделанные в Германии фирмой «Телефункен».

Микроволны





Как уже говорилось, потребовалось время, чтобы использовать короткие волны, хотя именно они и получались в первых экспериментах. Для того, чтобы получать микроволны, необходимо было уменьшать размеры ламп, которые тогда использовались в схемах генерации, а также размеры самих схем. Вскоре обозначилась проблема, вызванная временем, требуемым электронам для пролета от сетки к аноду лампы.

Напоминаем, что в вакуумной лампе, такой, какая использовалась в то время, электроны испускаются нитью, нагреваемой током, помещенной в эвакуированную стеклянную колбу, и окруженную металлической сеткой. Эти электроны собираются электродом, называемым анодом, производя тем самым ток. Величину этого тока можно контролировать путем электрического потенциала на сетке. Очевидно, что, двигаясь от нити к аноду и проходя через сетку (все эти элементы обозначаются как электроды лампы), электронам требуется время, и если в течение этого времени электрический потенциал на сетке заметно изменится, то это исказит сигнал, снимаемый с анода.

Чтобы уменьшить это время пролета, старались делать лампы меньшего размера, более компактными, уменьшая расстояния между нитью, сеткой и анодом до минимума. Эта проблема очень хорошо была описана в работе Ирвинга Ленгмюра и Карла Комптона (1931 г., США). В ней они указали, как можно продвинуться в область высоких частот, просто уменьшая размеры и расстояния между электродами.

Уже в 1933 г. в США фирма RCA выпустила лампу акрон, a Western Electric — знаменитую «кнопку звонка». Эти миниатюрные лампы позволяли генерировать частоты до 1500 МГц (длина волны около 20 см). Однако мощность была очень мала.

Магнетрон

На сцене появилось новое устройство, магнетрон, которое стало в середине 1920-х гг. преимущественным генератором. Было показано, что с помощью магнетрона можно получать очень высокие частоты.

В магнетроне используется комбинация электрического и магнитного полей. В первой реализации прямая нить накала (катод) окружалась цилиндрическим анодом. Внешнее магнитное поле было направлено так, чтобы заставить электроны, летящие к аноду, двигаться по спирали между двумя электродами.

Это устройство было изобретено Альбертом В. Халлом (1880—1966), который родился на ферме в штате Коннектикут и после получения степени в Йельском университете в 1913 г. стал работать в исследовательской лаборатории Дженерал Электрик (GE). В 1914 г. он изобрел «динатрон», первый в длинном ряду радиоламп впервые созданных им. Он также проводил исследования по проблемам кристаллографии и использовал рентгеновские лучи.