Страница 64 из 72
Критерием истинности любой теории является опыт. (Высказанная истина настолько тривиальна, что автору даже неудобно начинать с нее заключительный параграф об итогах развития классической общерелятивистской космологии за пролетевшие пятьдесят четыре года.) Для космологии это тоже закон. Во-первых, такая наука, бывшая безраздельно умозрительной, стала опираться на данные опыта, на данные наблюдений — факт сам по себе замечательнейший. Во-вторых, сочетание слов «классической, общерелятивистской космологии»… разве не говорит о ее признании? Сегодня мы смело можем сказать, что все имеющиеся в нашем распоряжении факты подтверждают космологию вселенной, построенную на фундаменте общей теории относительности.
Конечно, пока модели вселенной, построенные на основе теории Эйнштейна — Фридмана, лишь первые попытки математического описания наблюдаемого разбегания галактик; самые первые попытки и, конечно, чрезвычайно упрощенные. Мы еще слишком мало знаем наверняка, слишком мало имеем конкретных фактов о вселенной, чтобы построить адекватную модель. Но мы на правильном пути: факты, теория и снова факты.
Конечно, в космологии немало затруднений. И первое из них, о котором говорит выдающийся советский космолог А. Л. Зельманов, заключается в множественности моделей. При любом значении космологической постоянной уравнения Эйнштейна допускают множество решений, а следовательно, и множество моделей разных типов.
«Множественность моделей естественна, если их применяют лишь к ограниченным областям вселенной, — пишет А. Л. Зельманов. — Но модель вселенной, как целого, если такая, модель вообще принципиально возможна (что далеко не очевидно), должна быть единственна, как единственна и сама вселенная». «Единственна ли?» — сомневаются другие ученые.
Велики затруднения и с объяснением сингулярности, то есть наличия «особого состояния» в начале расширения фридмановских моделей. Действительно, как представить себе вселенную, стянутую в точку с чудовищной плотностью вещества?.. Мы уже знаем, что на сем затруднении усиленно пытались погреть руки теологи, но и без них это обстоятельство явилось камнем преткновения для многих теоретиков. За пятьдесят с лишним лет существования релятивистской космологии были предприняты неисчислимые попытки обойти «нуль-пункт» расширяющейся или пульсирующей модели и найти такое решение, которое, с одной стороны, не противоречило бы наблюдаемым данным, с другой — укладывалось в рамки современной физики и общей теории относительности.
Было высказано предположение, что при последующем после расширения сжатии «особая точка» достигаться не будет и вместо исчезновения вселенная будет совершать бесконечные колебания — осциллировать. Такая модель не имеет ни конца, ни начала. Она лишь пульсирует с определенным периодом. Конечно, в моменты сжатия и достижения максимальной плотности все галактики, все звезды, не говоря уже о планетах, должны разрушаться. В эти моменты, в условиях, напоминающих первые секунды «большого взрыва», происходит обновление мира. Все вещество галактик и звезд превращается в раскаленное облако плазмы, состоящей снова из смеси почти равного количества протонов и нейтронов. Затем должно начаться расширение, и весь цикл образования вещества, звезд и галактик повторится сначала.
Однако последние работы как советских физиков Я. Б. Зельдовича и И. Д. Новикова, так и американцев Р. Пенроуза и С. Хоукинга настойчиво требуют признания неизбежности существования «особых точек» в космологических решениях общерелятивистских уравнений.
При этом сущность «особой точки» (сущность особого — сингулярного — состояния материи в момент наибольшего сжатия) до сих пор остается неизвестной. Некоторые специалисты считают ее математическим символом какого-то физического состояния, пока еще неизвестного и недоступного анализу.
В 1969 году советские физики В. А. Белинский, Е. М. Лифшиц и И. М. Халатников, а также американец Ч. Мизнер считали существование сингулярности результатом исходных упрощений теории. Решая уравнения общей теории относительности, они нашли новый класс космологических моделей, в которых вселенная, приближаясь к «нуль-пункту», из-за своей неоднородности начинает осциллировать во времени. Тем самым предотвращается наступление сингулярного состояния. В работах советских физиков по-новому ставится вопрос о физическом смысле времени вблизи «нуль-пункта». На конечном интервале времени число осцилляций оказывается бесконечным. А следовательно, если измерять время числом циклов, то оно само окажется бесконечным. В этом смысле у теории пульсирующей вселенной есть свои достоинства. Некоторые ее предсказания получили поразительно точное подтверждение. Но есть у нее и серьезные затруднения, все еще не преодоленные ни с помощью наблюдений, ни теорией.
Скорее всего сингулярность указывает предел, до которого теория тяготения Эйнштейна пригодна. А дальше?..
При больших плотностях, по-видимому, нужна другая теория.
Единое «начало» вселенной порождает и трудность, связанную со шкалой времени. Помните, по старой шкале метагалактических расстояний, существовавшей до 1952 года, продолжительность эпохи расширения равнялась T = 1/H = 1/540 = 1,8 миллиарда лет. Этот срок находился в вопиющем противоречии даже с возрастом земной коры. Сейчас принято считать Т = 10–13 миллиардов лет. Это, конечно, лучше, но не намного. Космогонисты предполагают, что возраст наиболее старых звезд примерно… 25 миллиардов лет. Но звезды не могли образоваться до «рождения вселенной».
Вообще надо сказать, что многие специалисты в области космогонии настроены по отношению к космологии довольно решительным образом. Вот, например, что говорил Виктор Амазаспович Амбарцумян, основатель и глава широко известной во всем мире школы космогонии.
«…Некоторые теоретики, основываясь на законе Хаббла и на ряде других очень грубых и произвольных предположений, построили гипотетические модели вселенной, которые, по-видимому, отражают некоторые свойства реальной вселенной. Но характер этих моделей настолько зависит от сделанных упрощающих предложений, что эти модели следует считать очень далекими от реальности. Что касается меня лично, то я думаю, что на современном этапе этих теоретических работ даже не имеет смысла подробно сравнивать эти модели с наблюдениями».
Академик В. А. Амбарцумян не строит заранее теоретической модели, которая лишь затем подвергается эмпирической проверке. Его космогонические гипотезы, касающиеся вопросов возникновения звезд и звездных скоплений, галактик и их взаимодействия, возникают как обобщение результатов наблюдений.
Внегалактическая астрономия — главный эмпирический фундамент космологии — еще очень молода. А трудности, с которыми ей приходится сталкиваться, поистине фантастические. Многие результаты наблюдений лежат не только на пределе возможности уникальных приборов, но даже за этими пределами. Это обстоятельство допускает возможность различного толкования некоторых эмпирических данных. Читатель, наверное, помнит, что все наши рассуждения исходили из признания либо совершенного космологического принципа, либо его ограниченного варианта. Последний предполагает, что вселенная одинакова в разных точках и по разным направлениям. Совершенный же космологический принцип требует еще и того, чтобы так было всегда в разные моменты времени. Однако на любом этапе познания наука всегда имеет дело с некоторой ограниченной частью вселенной, так что выводы о ее однородности и изотропности всегда остаются предположительными.
Последнее время многие космологи стали отходить от космологического постулата, считая требования однородности и изотропности вселенной слишком жесткими, слишком сильно снижающими степень реальности такой модели. В свою очередь, отказ от космологического постулата требует сразу пересмотра некоторых важных выводов. Так, если согласиться с тем, что более близкое описание реальной пространственно-временной структуры вселенной дается ее анизотропной и неоднородной моделью, то зависимость конечности или бесконечности пространства от знака его кривизны становится неоднозначной. Впрочем, по поводу анизотропной и неоднородной вселенной среди специалистов споры только разгораются. Многие считают, что вселенная может быть неоднородна лишь «в малом»; в достаточно же больших объемах она однородна.