Страница 49 из 55
Несмотря на эти трудности и постоянные хлопоты, связанные с поиском денег для проекта, Свенсмарк радовался, потому что видел: его работа, начавшаяся в 1996 году, движется вперед и открывает новые темы, которые привлекают разных специалистов из других стран. Космические лучи и их связь с климатом стали предметом быстро развивающейся, полноценной области науки. Свенсмарк придумал для нее название и предложил создать Центр исследований по космоклиматологии.
«Эта новая область научных исследований изучает внеземные события, воздействующие на климат Земли на всех временных шкалах — от долей секунды до миллиардов лет, — и рассматривает влияние этих событий на земную жизнь — в прошлом, настоящем и будущем»[97].
Курс научных изысканий, видимый уже сейчас, далеко выходит за рамки традиционного обмена «твердой», вошедшей в учебники информацией между специалистами в различных областях знаний. При каждом повороте этот курс прямо выводит нас к передовым рубежам науки, будь то химия атмосферы, астрономия, геология или биология.
Любой, кто все еще полагает, что исследование связи между космическими лучами и облаками — экстравагантное отступление от традиционных метеорологии и климатологии, предпринятое несколькими чудаками, должен учесть, что в ЦЕРНе сооружается специальная установка для эксперимента «CLOUD», осуществляемого под руководством Джаспера Киркби. На момент написания этой книги к эксперименту привлечены пятьдесят специалистов из семнадцати институтов Австрии, Дании, Финляндии, Германии, Норвегии, России, Швейцарии, Великобритании и США. Мы будем последними, кто объявит, будто численная весомость — надежный индикатор научной добротности, и все же проект с использованием ускорителя частиц, проект, побудивший принять участие в исследованиях такой широкий круг известных специалистов по атмосфере и солнечно-земной физике, вряд ли можно считать легкомысленным. То, что эксперимент проводится именно в ЦЕРНе, вселяет в ученых особый оптимизм.
«Космические исследования уже показали, как „большая наука“, соединяя специалистов разных дисциплин, может самым поразительным образом умножать наши знания об окружающем мире»[98].
Эксперимент «CLOUD» начнется в Женеве в 2010 году. Первым делом ученые повторят эксперимент «SKY», поставленный Свенсмарком, но на усовершенствованном оборудовании, сам же проект «CLOUD» рассчитан на несколько лет. Заряженные частицы, разгоняемые ускорителем, будут имитировать космические лучи, и это позволит лучше понять, какую роль играют реальные космические лучи в создании «точек» облакообразования на всевозможных высотах в атмосфере. В группу вошли пытливые и увлеченные исследователи, прекрасно понимающие, что заря космоклиматологии только начинается.
В ходе эксперимента «CLOUD» ученые будут прослеживать электрические и молекулярные события, которые происходят на отрезках времени, измеряемых долями секунды, часами и днями. Казалось бы, это исчерпывает доступный диапазон временных шкал. Однако экспериментаторы надеются расширить диапазон до миллиардолетий: они получат возможность испытать действие космических лучей в специальных смесях газов, которые воспроизведут атмосферу Земли, существовавшую в древнейшие времена, когда ее состав сильно отличался от сегодняшнего.
В небо поднимутся исследовательские аэростаты и самолеты, несущие специальное оборудование для охоты за «точками». Они должны будут подтвердить: то, что исследователи видят в своих лабораторных экспериментах в Копенгагене или Женеве, происходит также «взаправду», на открытом воздухе. Усовершенствование наших представлений об атомных и молекулярных механизмах формирования облаков — это другая задача. Успех придет только тогда, когда исследователи смогут хорошенько обсчитать воздействие космических лучей на образование облаков и их свойства. Причем обсчитать в такой степени, чтобы точно оценить вклад этих лучей в нынешние изменения климата — как в глобальном, так и в региональных масштабах. Вклад, меняющийся в соответствии с колебаниями потоков заряженных частиц, которые вынуждены подчиняться прихотливому магнитному настроению Солнца.
Астрономам также предстоит немало сделать, чтобы отшлифовать свой вклад в космоклиматологию, и речь идет не только о сверхновых Пояса Гулда, которыми завершилась предыдущая глава. Самое интересное начинается, когда мы задаемся вопросом: откуда вообще берутся заряженные частицы, которые разгоняются в космических ускорителях остатков сверхновых? Сейчас распространено мнение, что производство этих частиц достигает пика через сто тысяч лет после взрыва звезды.
Система наземных гамма-телескопов в Намибии, получившая название HESS[99], — очень чувствительный инструмент. С его помощью были обнаружены несколько неизвестных ранее объектов. Возможно, это газовые облака, подвергшиеся атакам космических лучей, которые были испущены остатками давней сверхновой, только сейчас вступающими в «рабочий режим». Как было объявлено в 2006 году, один яркий участок неба — яркий в гамма-лучевом смысле — лежит почти точно по направлению к центру Млечного Пути. Астрономы, работающие на HESS, полагают, что космические лучи в этом районе Галактики интенсивнее и быстрее тех, что достигают солнечных владений. Джим Хинтон из Института ядерной физики общества Макса Планка в Гейдельберге сообщил, что идентификация этого яркого объекта была лишь первым шагом:
«Конечно, мы все еще продолжаем направлять наши телескопы на центр Галактики и будем работать не покладая рук, чтобы точно определить, где находится космический ускоритель. Я уверен, что нас ждет еще много восхитительных открытий»[100].
Орбитальные рентгеновские телескопы «Чандра»[101] и «Ньютон»[102] детально исследовали близлежащие и относительно молодые остатки сверхновой. Хотя эти источники, возможно, еще не стали солидными фабриками по производству космических лучей, они уже показывают ударные волны такого типа, который предположительно разгоняет частицы до очень высоких энергий. Космические обсерватории обнаруживают рентгеновское излучение, испускаемое ускоренными электронами. В 2005 году «Чандра» представила первое убедительное свидетельство ускорения в космосе отдельных протонов и атомных ядер.
«Чандра» также устремила свой взор на остатки сверхновой Тихо Браге, вспыхнувшей на земном небе в 1572 году. Эту сверхновую отнесли к типу 1а[103], а не к тем типам массивных сверхновых, которые полагают ответственными за большую часть космических лучей в Галактике. Пусть так, однако и остатки сверхновой Тихо Браге подбросили свою загадку: астрономы «Чандры» обнаружили, что атомное вещество, выброшенное из звезды, перемещается в космосе с гораздо большей скоростью, чем это предсказывают стандартные теории. Джессика Уоррен из Рутгерского университета (штат Нью-Джерси, США) подозревает, что теории придется менять:
«Наиболее вероятное объяснение такому поведению — это то, что значительная часть энергии ударной волны, направленной наружу, уходит на разгон атомных ядер до скоростей, приближающихся к скорости света»[104].
Магнитные поля, пронизывающие Млечный Путь и направляющие космические лучи в наши пределы, должны быть точнее отмечены на карте, для того чтобы мы представляли себе, с каким потоком космических лучей придется столкнуться Земле, когда она будет проходить через спиральные рукава. Ключом к магнитному полю может служить направление колебаний радиоволн (говоря более научно, направленное колебание векторов напряженности электрического поля или напряженности магнитного поля), то есть их поляризация. Ученым, занимающимся исследованиями в этой области, поможет мощный радиотелескоп «SKA»[105]. В рамках этого глобального проекта, пока окончательно не утрясенного, на огромной площадке в Австралии или Южной Африке будет построено множество радиоантенн, совокупная площадь которых позволит улавливать самые слабые радиосигналы из космоса.
97
Из заявки Хенрика Свенсмарка на предоставление финансирования, 2006 г.
98
Из заявки на эксперимент «CLOUD», CERN/SPSC 2000–02, SPSC/P317, 4 April 2000.
99
HESS, High Energy Stereoscopic System (англ.) — стереоскопическая система регистрации высоких энергий. Установка из четырех гамма-телескопов нового поколения, предназначенная для изучения космических гамма-лучей. Введена в строй в 2003 г.
100
Из пресс-релиза «HESS», 6 февраля 2006 г.
101
Космическая рентгеновская обсерватория «Чандра» (космический телескоп «Чандра») была запущена НАСА в 1999 г. для исследования космоса в рентгеновском диапазоне. Работает по сей день.
102
Космическая рентгеновская обсерватория «ХММ-Ньютон» была запущена Европейским космическим агентством в декабре 1999 г. ХММ (X-Ray Multi-Mirror Mission, англ.) в названии обсерватории означает «рентгеновский многозеркальный телескоп».
103
Сверхновая типа 1а — это так называемая термоядерная сверхновая, в основе механизма взрыва которой лежит процесс термоядерного синтеза в плотном углеродно-кислородном ядре звезды. Предшественники таких сверхновых — белые карлики.
104
Цит. по: «Tycho’s Remnant Provides Shocking Evidence for Cosmic Rays», http://www.spaceref.com/news/viewpr.html?pid=17 874, 23 сентября 2005 г.
105
SKA, Square Kilometer Array (англ.) — букв.: «матрица площадью в один квадратный километр» или «квадратный километр собирающей поверхности» — международный радиотелескоп XXI века, чувствительность которого примерно в 100 раз превысит современные радиотелескопы. За право строительства SKA борются Австралия и ЮАР. Решение о месте строительства будет принято международной группой экспертов в 2012 году.