Добавить в цитаты Настройки чтения

Страница 9 из 38

Задача производства 65-нанометровых транзисторов натолкнулась еще на одно затруднение. При таких размерах слой изоляции, накладываемый поверх транзистора и отделяющий управляющий электрод от полупроводникового «канала» (он соединяет вход транзистора с его выходом), становится не толще 1,2 нм. Следовательно, это всего пять-шесть слоев атомов. Значит, изоляция становится ненадежной, и электроны вполне могут просочиться с управляющего электрода в канал: транзистор «даст течь». А чем больше такая утечка, тем меньше сопротивление изолирующего слоя и попутно напряженность электрического поля между управляющим электродом и каналом. А это поле управляет транзистором: по мере его усиления или ослабления канал транзистора открывается или запирается. Если поле ненадежно, то и управлять потоком электронов внутри транзистора невозможно.

Обычно для изоляции используют оксид кремния (кремнезем). Это очень хороший изолятор — если нанести его достаточно толстым слоем. В нашем случае это невозможно, поэтому хорошо бы найти изолятор получше. Меньшая электропроводность у оксидов редкоземельных элементов, например у оксида гафния. Его применение уменьшило утечки в 10 раз. Однако любая перемена влечет за собой целую вереницу последствий. Оказалось, среди прочего, что оксид гафния плохо уживается с металлом, из которого изготовлены электроды транзистора, так что пришлось искать подходящий металлический сплав.

Само явление тока утечки имеет квантовую природу и объясняется квантовыми свойствами электрона. Эти свойства начинают проявляться как раз на расстояниях, меньших 65 нм. Пока инженеры, разрабатывавшие новые транзисторы, не дошли до этого предела, им не было нужды думать о квантах и квантовых эффектах. Но теперь без раздумий о подобных предметах обойтись было нельзя. Зато, научившись как-то справляться с квантовыми эффектами, инженеры смогли создать новые приборы и инструменты, работающие на расстояниях в 10-100 нм и имеющие размеры того же порядка. Это уже были не транзисторы — в новинках были задействованы иные квантовые явления. Но давайте сначала поглядим, как методы, выработанные в производстве микроэлектроники, вышли за границы электроники и начали распространяться совсем в иных технологических областях.

Итак, неуемная миниатюризация оторвалась от электроники и вторглась в другие уделы. Ее нашествие всегда и повсюду сопровождалось немалой сумятицей: много волнений, например, вызвала ее атака на механику. Станки и машины, предназначенные для производства деталей посредством точения, фрезерования и сверления, дошли до предела точности. Еще удавалось изготавливать прекрасные детали с допуском порядка одного микрометра, но двигаться дальше, казалось, уже некуда. В 1980-е годы в Калифорнийском университете оптимизацией обработки оксида кремния занимался Рихард С. Мюллер — он искал способы введения изоляторов в интегральные схемы. Знакомство с фотолитографией подсказало ему мысль о новом методе формирования микродорожки: пластинка кремния покрывается слоем оксида кремния и на поверхности этого оксидного слоя рисуется дорожка, которая потом гравированием врезается в собственно кремниевую пластинку. Из этой разработки родилась вся кремниевая микромеханика: процедуры, освоенные микроэлектроникой, вытеснили все привычные процессы, и детали, производимые методами микромеханики, стали совсем крошечными, и, главное, резко повысилась точность допусков и посадок. Размеры деталек съежились с величин порядка 100 мкм до считаных микрометров, а допуск точности уменьшился До нескольких нанометров. Потом из кремниевой микромеханики родились так называемые «микроэлектромеханические системы» (МЭМС — MEMS), под которыми подразумевались механические элементы (датчики, исполнительные механизмы и пр.) собственно электроники: эти устройства или принимают какой-то (не электрический) сигнал, или подают (электрическую) команду механическим элементам. И микроэлектронная промышленность начала производить МЭМС в количествах, сравнимых с количествами произведенных транзисторов, и при этом с малыми издержками.

МЭМС образовали маленькую — и не очень вместительную — иерархию самых мелких деталей и механизмов пока еще микронного масштаба: производились дорожки, насосы, клапаны, пружины, зажимы, зубчатые передачи с микрометровыми шестернями — речь шла уже о десятых долях микрометра (1 мкм = 1000 нм; 100 нм = 0,1 мкм). Подобные механизмы порой приводятся в движение электрическими моторчиками размером с красное кровяное тельце. МЭМС применяются в печатающих устройствах — в тех узлах, которые разбрызгивают красители, наносимые на бумагу; для управления миниатюрными зеркалами в видеопроекторах или для повышения быстродействия джойстиков, применяемых в видеоиграх. Сегодня МЭМС трудятся в фотоаппаратах, видеокамерах, часах, кардиостимуляторах и на них приходится 20–40 % стоимости современного автомобиля. Желающим примеров можно указать на датчики давления в кондиционерах и системах обеспечения внутреннего климата в конторских помещениях, на измерители силы торможения, на индикаторы уровня топлива в бензобаке и на сенсоры надувных подушек в автомобилях (в самых «навороченных» моделях устанавливается до шести различных измерителей ускорения).





Высокие достоинства МЭМС очевидны. Они благоденствуют, продолжая извлекать выгоды из прогресса литографии, о котором печется могучая старшая сестра — микроэлектроника, располагающая и исследовательскими лабораториями, и ресурсом для освоения лабораторных новинок. К примеру, кремний производится в виде брусков толщиной в 100 нм, то есть в тысячную долю толщины волоса, но длина бруска — 100 мкм. Увеличим эту мелкоту до привычного нам масштаба: пусть длина бруска равна метру. В таком случае его толщина будет равна миллиметру — понятно, что в нашем мире это невозможно (брусок сломается под собственной тяжестью).

Но в мире расстояний, измеряемых микрометрами, такие бревна или прутья (или микрорычаги) существуют и при этом не только не ломаются, но даже не гнутся. Правда, они колеблются, и частоты этих колебаний весьма высоки. Эти вибрации вызываются тяжелыми молекулами: когда некая молекула усаживается на микробрусок, частота его колебаний меняется, и нетрудно догадаться, что изменение частоты определяется массой чужой молекулы. Важно не замерить эту массу (массы молекул давно известны), но заметить ее присутствие. А колебания микробруска (точнее, изменение этих колебаний) помогают опознать именно вот эту молекулу среди миллиона других молекул.

Производственные методики, освоенные микроэлектроникой и породившие МЭМС, взбудоражили и биологию. Заговорили о невиданных приборах для невозможного прежде биохимического анализа, нацеленного на крохотки, именуемые молекулами ДНК, и пользующегося подобными же молекулами. Для производства такого оборудования применяли фотолитографию по кремнию и прикрепление нитей ДНК к кремниевой поверхности. Сегодня уже есть кремниевые приборчики с 300 тысячами спиралек ДНК. Эти устройства способны обнаруживать в геноме поломки, вызывающие наследственные болезни, и распознавать вирусы. Однако пока что требуется большая предварительная работа: нужна кропотливая подготовка тех участков ДНК, которые предполагается изучать. Представляется выгодным объединить все этапы исследования в одном месте, на одной и той же молекуле или группе молекул, чтобы сразу же получить все данные о цепочке атомов (о капле крови или воды, скажем). Речь, иначе говоря, не о том, чтобы принести какие-то крохотки в лаборатории, а о том, чтобы создать малюсенькие, но самые настоящие лаборатории.

И ученые принялись придумывать такие крохотные лаборатории, в которых можно было бы анализировать мельчайшие частицы, например капельку крови. А это означало, что нужно было строить крошечные сепараторы, химические реакторы, ферментёры, датчики и как-то увязывать всю эту мелкоту с построением электрических схем из проводников много тоньше волоса. Дополнительное затруднение налицо: надо еще как-то доставить упомянутую капельку к этим самым проводникам. В таком масштабе расстояний уже очень ощутимы поверхностные явления, и взаимодействие капельки со стенками сведется к тому, что капелька просто не сможет пройти через промежуток в стенках — она «приклеится» к ним. Знатокам микрогидравлики пришлось мучиться с микроклапанами — устройствами, в которых электрическое поле помогает капле просочиться через микроканал.