Добавить в цитаты Настройки чтения

Страница 23 из 38

Так как эта новая технология пока что только на подходе, исследователи тем временем придумывают новые молекулы, умеющие вычислять. В сущности, такие молекулы, судя хотя бы по тому, что предлагал Форрест Картер, должны быть огромными, чтобы вместить в свой объем всю ту сложность, без которой ни о каких вычислениях не может быть и речи.

Но это порождает множество проблем. Во-первых, синтез таких молекул — дело нелегкое. Да и манипулировать исполинскими молекулами, передвигая их поштучно, одну за одной, очень непросто: надо же так подвинуть громадную молекулу, чтобы ее отросток — и именно тот, что нужно — точно лег на малюсенькую площадку металлического контакта. И еще, сила тока, протекающего через очень уж длинную молекулу, не может быть слишком большой — не то молекуле несдобровать. Речь, видимо, идет о величинах менее аттоампера, a 1 аА = 10-18 А, то есть аттоампер в миллиард миллиардов раз меньше ампера. Электроника, особенно быстродействующая, такой слаботочной быть не может. Значит, нужны новые вычислительные молекулы с новыми структурами, и родиться они должны как плод союза молекулярной электроники с квантовыми калькуляторами.

Первыми о квантовых вычислительных устройствах заговорили еще в 1980-х годах Ричард Фейнман и Дэвид Дейч из Центра квантовых вычислений Оксфордского университета. Принцип квантового калькулятора основывается на спонтанной реакции квантовой — атомной или молекулярной — системы, находящейся в некотором нестационарном состоянии; предложено использовать для вычислений самопроизвольный отклик этой системы на какой-то стимул. Система делится на маленькие маленькие вычислительные единицы — «квантовые биты». Линейка квантовых битов может быть приведена к квантовой суперпозиции двух основных состояний (0 или 1), и оба состояния будут взаимодействовать между собой, но без обмена электронами. Само вычисление сводится к предоставлению ансамблю квантовых бит возможности самопроизвольно развиваться во времени. Квантовое вычислительное устройство считает примерно так, как считает время часовой механизм на шариках или на подшипниках, катающихся вдоль реек разной длины. Такие часы отсчитывают время ничуть не хуже, чем часы на зубчатых колесиках. Сначала систему квантовых битов готовят, вводя в нее два складываемых числа. Потом система развивается во времени самотеком: состояния отдельных бит меняются, пока не установится новое стационарное состояние всей линейки бит, которое и будет искомой суммой.

Эта концепция квантового калькулятора показывает, что вычислительные устройства не обязательно строить из электронных схем. Более того, специалисты по молекулярной электронике показывали, что незачем «заставлять» молекулу уподобляться электронной схеме — молекула может считать, но совсем не так, как приборы макро- или даже микроэлектроники. Оказывается, для того, чтобы научить молекулу считать, достаточно воспользоваться квантовой динамикой, которая присуща любой молекуле. При этом квантовые молекулы-калькуляторы способны выполнять все мыслимые арифметические и логические операции и, при равной сложности, совсем не обязаны быть такими же громадными и громоздкими, как те молекулы-схемы, которые пригрезились Форресту Картеру. Ученые даже сумели показать, что для квантовых расчетов вовсе незачем дробить молекулу на квантовые биты. Управлять внутренними квантовыми состояниями молекулы можно и манипулируя ее электронной структурой. Сами эти молекулы уже синтезируются и, надо думать, скоро мы узнаем о первых экспериментах с ними. Среди прочего они избавляют нас от пресловутого закона Мура. В самом деле показано, что для увеличения вычислительной мощности не обязательно нагромождать все больше и больше транзисторов на все сильнее уменьшающейся подложке, так как есть возможность управлять развитием квантовой системы во времени, а сама эта система может становиться все сложнее и сложнее и каждое новое поколение подобных систем будет богаче возможностями, чем системы предыдущего поколения.

Первые механические молекулы и первые молекулярные вычислители уже описаны. Напрашивается мысль о соединении молекул обоих типов: если поставить молекулу-калькулятор на молекулу-карету, то получится… молекулярный робот. В самом деле в нашем — макроскопическом — мире роботом называется устройство, выполняющее различные механические задачи и управляющееся вычислительной машиной, установленной в корпусе робота. Сегодня молекула-робот — лишь идея или, лучше сказать, мечта. И никто не скажет, сбудется ли когда-нибудь эта мечта. Химическому синтезу подобных нанороботов и телеуправлению таким синтезом мешают препятствия, кажущиеся пока непреодолимыми.





Но если уж синтез нанороботов столь сложен, то почему бы не попытаться его обойти? Скажем, возложив эту задачу на машины. Ну и пусть сами эти машины тоже будут молекулярными. И пусть они, перебирая атом за атомом (или присоединяя одно химическое соединение к другому), собирают из них все нужные молекулы-машины. Не очень пока понятно, какими они, эти молекулярные сборщики, будут. Ясно лишь, что речь идет о самых настоящих сборочных цехах, даже заводах по производству молекул вычислительных и механических, а также нанороботов. Понятно, конечно, что на нынешнем уровне знаний что-либо в этом роде немыслимо и неосуществимо.

Судя по тому, что нам рассказывают, эти молекулярные сборщики молекул-машин должны выглядеть ультраминиатюризованными копиями роботов, уже трудящихся на наших заводах. К примеру, такому сборщику нужны клещи или пинцет и телескопическая механическая рука — чтобы захватывать маленькие молекулы и по одной подсоединять их, друг за другом, выстраивая нужные агрегаты. Ричард Смолли, большой мастер по обхождению с молекулами фуллерена, не согласен: если молекулярные щипцы схватят молекулу, то выпустить ее они просто не смогут, так как для захвата понадобится химическая реакция, а что делать для того, чтобы щипцы ослабили хватку? Химическую реакцию так просто не «выключишь» — это же не электрический ток. И остановить ее, если она происходит, непросто. Но кто сказал, что сборщику непременно нужны щипцы на конце телескопической руки-схвата — неужели передвинуть один атом или одиночную молекулу нельзя как-то по-другому? Наши коллеги в Свободном университете Берлина иглой туннельного микроскопа передвигали молекулу с шестью ножками в надежде, что она «проглотит» атомы меди, предварительно выложенные на поверхности. Эти атомы постепенно, по одному, оказались под молекулой, в кучке, после чего как-то сортировать или перебирать их стало невозможно — мешали ножки молекулы. Так что экспериментатор может отпустить захваченные было атомы — если только ему удастся поднять иголкой ту молекулу, которая собрала их в кучку.

Другие ученые, в том числе Уилсон Хо, Дон Эйглер, Герхард Мейер или Жеральд Дюжарден из парижского университета Пари-Сюд в Орсе, пробовали на роль сборщика туннельный микроскоп. Они пытались, пользуясь этим прибором, синтезировать молекулу, соединяя, по одному, атом за атомом или фрагмент молекулы за молекулярным фрагментом. Оказалось, что подтолкнуть иглой микроскопа две молекулы навстречу друг другу, чтобы они вступили в химическую реакцию, — предприятие очень утомительное. Надо ухитриться так подвести иглу, чтобы молекула заняла нужное положение: вступит молекула в реакцию или же останется безучастной, зависит от ориентации этой молекулы; точнее, от ориентаций обеих молекул. Правда, похоже на то, что эту задачку и решать незачем: тепло приводит молекулу в движение, исследуемые молекулы самопроизвольно принимают множество самых разных ориентаций, и какие-то из них наверняка вступят в нужные исследователям реакции.

Монументализировать так монументализировать — почему бы и нет? Но неужто до бесконечности? Или все-таки до какого-то предела? Так до какого же размера нам придется строить молекулу? А до нужного — позволяющего в один присест синтезировать одну молекулу-машину. Так, в 2002 году японские химики сумели сформировать молекулярную цепочку длиной в 100 нм. Раньше или позже, но по достижении некоторого (но какого?) размера или определенной сложности (какой?) вновь синтезировать за один раз очередную молекулу, состоящую из все более усложняющихся механизмов, не удастся. Напрашивается возвращение к обычной производственной практике — сборке из готовых частей. А это приводит нас в область супрамолекулярной химии: есть химики, которые уже возделывают эту ниву, например Фрейзер Стоддарт из университета в Лос-Анджелесе, Жан-Пьер Соваж в научном центре CNRS, лауреат Нобелевской премии Жан-Мари Лен в университете в Страсбурге.