Добавить в цитаты Настройки чтения

Страница 39 из 68



Этот метод активно отстаивали наши проектанты: его идеолог Борис Иванович Столповский и Шустин. При использовании этого метода измеряются параметры относительного движения объектов, по которым, в свою очередь, вычисляется необходимое по величине и направлению изменение скорости, нужное для «попадания» (с малой относительной скоростью) аппарата («активного») в другой («пассивный»). Конечно, с одного раза попасть не удастся вследствие неточностей в измерениях, ориентации и отработке двигательного импульса. Следовательно, эту операцию придется проделывать два — четыре раза. Важно, чтобы процесс сходился. В результате можно сблизиться настолько, что останется лишь произвести причаливание одного аппарата к другому. Метод этот естественный и правильный, и именно он теперь реализуется во время сближения кораблей и аппаратов на орбитах. Но важная особенность этого метода в том, что необходимые вычисления в ходе сближения достаточно сложны, и без электронной вычислительной машины на борту их провести практически невозможно.

Работы над небольшими вычислительными машинами в нашей стране уже велись. Говорили, что где-то в Питере (тогда еще Ленинграде), в КБ-2 чехи Старое и Берг работают над созданием малых электронных вычислительных машин на основе неизвестно откуда взятых новых технологий. Поехал посмотрел. Показали мне достаточно компактную машину УМ-2. Претенциозное название, но «2» — вроде бы и неплохо: все-таки уже не первая. Мне показалось, что авторы мало похожи на чехов, да и технологиями этими они не очень владели. На вопросы об объеме постоянной и оперативной памяти, о быстродействии, о частоте сбоев, о надежности четких ответов от них не получил. Чья же это технология? Не краденая ли? Похоже, что машины сырые и ненадежные. А нам нужна была надежная машина, резервированная, с автоматическим распознаванием отказов и с автоматическим переходом на резервный комплект. Ничего этого не было и в помине.

Как же быть? И вот родилась идея! Использовать метод параллельного сближения, менее экономичный, но зато более простой, против которого сначала активно возражали и мои товарищи проектанты, и управленцы. Метод этот известен из теории управления зенитными ракетами. Суть его в том, что двигатель активного объекта при своих включениях гасит, сводит к нулю угловую скорость линии визирования, то есть линию, соединяющую два сближающихся объекта, и обеспечивает регулирование скорости при движении вдоль этой линии. Замерить составляющие относительной скорости (одна перпендикулярна линии визирования, другая — вдоль нее), как и расстояние между объектами, сравнительно нетрудно с помощью радиолокатора с антенной наведения, стабилизируемой с помощью гироскопа. Удалось нам найти и организацию, где могли сделать нужную систему измерений параметров относительного движения.

Главным конструктором этой системы был выдающийся инженер Евгений Васильевич Кандауров. Вычисления, проводимые в процессе сближения при использовании этого метода, оказались достаточно просты, с ними должны были справиться небольшие аналоговые счетно-решающие устройства, которые мы могли изготовить сами. Метод параллельного сближения решено было применить, начиная с расстояния между кораблями около 20 километров, а до этого осуществлять сближение на основе наземных радиоизмерений. Радиолокатор со стабилизируемой с помощью гироскопов антенной должен измерять угловую скорость линии визирования, дальность и радиальную скорость, а также выдавать управляющие сигналы на взаимную ориентацию сближающихся аппаратов. Сразу было решено автоматизировать весь процесс сближения и стыковки и в то же время предусмотреть возможность ручного управления процессом причаливания с расстояний менее 200–400 метров.

Далее предстояло решить задачу причаливания и создать стыковочный узел. И здесь было много вариантов, вплоть до самых фантастических. Специалисты по системам управления во главе с В. П. Легостаевым предложили, например, установить на одном из кораблей (пассивном) большую петлю, а на другом — крючок, который бы цеплял за петлю и затем удерживал корабль. Точность сближения, действительно, требовалась при этом существенно меньшая (это и нравилось управленцам). Но мы считали это предложение не просто технически неубедительным, неоправданным, но и несерьезным. Однако легостаевцы настаивали на своей идее. Обсуждалась она едва ли не на каждом совещании по проблеме стыковки. Вместо того чтобы заниматься делом и согласовывать схему работы и параметры системы, мы тратили время на пустые споры, уводящие в сторону. Мы называли эту петлю удавкой и вынуждены были доказывать очевидные вещи: ведь если принять удавку, то нужно придумать, сделать и отработать механизм раскрытия петли, создать специальные лебедки для стягивания объектов, стабилизировать и взаимно ориентировать аппараты во время стягивания и, в конце концов, все равно сделать стыковочный узел для обеспечения жесткого соединения. К тому же реализация этой идеи сложна и с точки зрения динамики. Значительно проще и надежнее осуществлять сближение кораблей вплоть до контакта, а затем провести захват и жесткое соединение с помощью стыковочного узла. Из наших оценок процесса сближения на заключительном этапе следовало, что процесс можно закончить попаданием в стыковочный узел с диаметром не более метра, что и подтвердилось впоследствии. Споры между проектантами и управленцами по этому поводу шли долго и были достаточно острыми. «Да удавитесь вы сами на вашей удавке, а мы не будем!» Выиграли это сражение мы. Но они давиться не стали.

Еще в 1961 году у нас прорабатывался узел жесткой стыковки по схеме штырь — конус с винтовой системой стяжки. Конкретный вариант конструкции штыря предложил, кажется в 1962 году, ветеран нашего конструкторского бюро Александр Коновалов. Это был тогда уже не молодой, но очень изобретательный человек, не имевший инженерного диплома. После того как эту схему исследовали специалисты по динамике работы механизмов, к ее окончательной разработке приступила группа конструкторов во главе с В. С. Сыромятниковым.



Намного труднее на этот раз было с весом, хотя теперь мы исходили из существенно большей грузоподъемности ракеты-носителя — 6,5 вместо 4,5 тонн, так как к этому времени была создана более мощная третья ступень ракеты-носителя.

Новый корабль должен был не только осуществлять сближение и стыковку, но и позволять летать двум-трем космонавтам в течение нескольких недель (предел «Востока» — десять дней), а в условиях совместной работы со станцией (мы, естественно, намеревались со временем превратить этот корабль в транспортное средство для обслуживания орбитальных станций) — до нескольких месяцев. Хотелось существенно улучшить условия работы, в том числе — проведения наблюдений и экспериментов, создать более комфортные условия жизни экипажу (оборудовать на борту отдельный туалет и т. д.), а также усовершенствовать спуск и приземление.

Наиболее трудной представлялась задача создания и отработки средств управления процессами сближения и причаливания, механической и электрической стыковки, а также маршевых и координатных двигателей, обеспечивающих процессы сближения и стыковки, систем ориентации и управления спуском с использованием аэродинамической подъемной силы и мягкой посадки.

На «Востоке» спускаемый аппарат имел форму сферы, которая при движении в атмосфере не может иметь аэродинамической подъемной силы, и поэтому спуск его идет по довольно крутой траектории, по мере снижения все быстрее растет плотность атмосферы, и в результате при входе в плотные слои атмосферы перегрузки, действующие на космонавтов, возрастают до 8–10 единиц. Космонавты воспринимают эти перегрузки как увеличение своего веса, то есть при спуске с перегрузкой десять единиц они ощущают свой вес в десять раз большим, чем на земле. Для космонавтов, недолго пробывших на орбите, это не страшно. Но при длительных полетах ослабленному невесомостью организму космонавта, рассуждали мы, большие перегрузки наверняка противопоказаны. Если у корабля есть хотя бы небольшая подъемная сила, еще лучше — регулируемая, то корабль сможем вести в атмосфере по более пологой траектории, он будет тормозиться медленнее, перегрузки снизятся. Кроме того, регулирование подъемной силы позволяет менять крутизну спуска, и, следовательно, можно выбирать точку приземления и осуществлять посадку с точностью до нескольких десятков километров, а затем, может быть, и более высокой. Поэтому пришлось искать новую форму спускаемого аппарата, которая обеспечивала бы возможность не только торможения, но и создания хотя бы небольшой аэродинамической подъемной силы.