Добавить в цитаты Настройки чтения

Страница 29 из 54

Доктор Матрикс великодушно сослался в своей лекции на главы 8 и 9 моей книги, вышедшей в мягкой обложке и называющейся «Математика, магия и мистика» (издательство «Dover»)[60]. Эти главы посвящены всевозможным удивительным геометрическим исчезновениям, в том числе таинственной пропаже лиц и людей! Там описано, в частности, блистательное открытие мага-любителя Пола Карри: путем простой перестановки кусков некой фигуры получается фигура, казалось бы, той же площади, но с большой дырой внутри!

Доктор завершил свой доклад кратким рассказом о числах трибоначчи. Ряд трибоначчи получают, всякий раз суммируя три предыдущих члена: 1, 1, 2, 4, 7, 13, 24, 44, 81… В обобщенной последовательности Фибоначчи отношение соседних членов А и В (т. е. результат деления А на В) стремится к 0,618… — величине, обратной прославленному «золотому сечению». В последовательности трибоначчи такое отношение стремится к 0,543… Числа тетраначчи получают путем суммирования четырех предшествующих элементов ряда. Разумеется, можно обобщить этот случай, приняв за n количество суммируемых элементов. Тогда при стремлении n кбесконечности отношение соседних членов будет по мере увеличения их номеров стремиться к 0,5.

Как я позже узнал от Дональда Кнута, известного ученого-компьютерщика из Стэнфордского университета, подобные ряды впервые были предложены Нараяной Пандитой в 1356 году, в главе 13 его замечательной работы, написанной на санскрите и озаглавленной «Ганита каумуди» («Услады лотосовых вычислений»)[61]. Кнут обсуждает ее и дает ссылки на другие работы в четвертом томе своего классического труда «Искусство компьютерного программирования»[62]. Позже эту последовательность заново открыл» четырнадцатилетний Марк Фейнберг. Он написал об этом в «Fibonacci Quarterly»[63]. В 1967 году Марк, уже второкурсник Пенсильванского университета, разбился на мотоцикле.

Доктор Матрикс, когда мы обедали с ним и с Дональдом Кнутом, сообщил нам еще об одной неправдоподобной диковинке, не связанной с числами Фибоначчи. Расположите десять цифр в алфавитном порядке, и они образуют случайное и весьма скучное с виду число 8 549 176 320. Разделите его на 5. Получится 1 709 835 264 — еще одно десятизначное число, где представлены все десять цифр! Разделите и его на 5. Получится 341 967 052,8 — третье число, где каждая из десяти цифр встречается по одному разу[64]!

Теперь разделим это число на 4. Окажется, что вы снова вернулись к самому первому — «алфавитному» — числу, только в нем теперь появилась десятичная запятая. Понимаете, отчего это произошло? Дважды разделив на 5 и один раз на 4, вы тем самым разделили первое число на 100[65].

Я послал эту диковинку, обнаруженную доктором Матриксом, своему другу Оуэну О'Ши, который родом из ирландского города Cobh (произносится «Коув»). Он — автор недавно вышедших «Магических чисел Профессора»[66]. В ответ Оуэн написал мне о множестве других удивительных свойств этого якобы «неинтересного» алфавитного числа. Например, оно раскладывается по степеням простых чисел как произведение 210, 33,5 и 61843. Это означает, что 8 549 176 320 без остатка делится на все числа от 1 до 9, исключая 7. Множитель 61 843 (тоже простое число) возникает довольно неожиданно.

О'Ши двумя способами делит число 8 549 176 320 по разрядам, получив следующее уравнение:

854 + 917 + 632 + 0 = 8 · 5 · 49 + (1 · 7 · 63) + 2 + 0

Каждая часть равна 2403.

Затем О'Ши составил число, воспользовавшись обратным алфавитным порядком, и получил 0 236 719 458. Представив разряды этого числа в виде слагаемых: 0 + 2367 + 19 + 4 + 5 + 8, — он снова пришел к сумме 2403.

Два американских математика, Джеймс Смоук и Томас Дж. Ослер, в своей книге «Волшебный трюк Фибоначчи»[67] сообщают еще об одном удивительном фокусе. Возьмем дробь 100/89. В десятичном виде она равна 1,123 595 505 61… Первые пять цифр в ней — это первые пять чисел Фибоначчи[68].

Добавьте два нуля в числитель и по девятке в начало и конец знаменателя, и у вас получится дробь 10000/9899, то есть

1,0102030508132134559046368…

Заметьте: первая единица, а затем девять следующих пар цифр представляют собой десять первых чисел в ряду Фибоначчи!

Авторы приводят доказательство, что если такую процедуру повторять бесконечно, то можно получить все числа Фибоначчи из этого ряда! Каждый следующий шаг увеличивает количество получаемых чисел Фибоначчи на пять. Таким образом, если представить дробь 1000000/998999 в десятичном виде и объединить составляющие ее цифры в триады, мы увидим, что перед нами первые пятнадцать чисел Фибоначчи; следующий шаг даст нам первые двадцать пять элементов ряда, и так до бесконечности!

Этот забавный случай рассмотрен в упражнении G43 «Конкретной математики» Грэхема, Кнута и Паташника[69], заметивших, что данное явление впервые обнаружили Брук и Уолл (дается ссылка на их статью в «Fibonacci Quarterly»)[70]. Кнут сообщил мне, что похожие дроби, такие как 1000000/989899 и 1000000000/898998999, сходным образом порождают числа трибоначчи!

Полагаю, мало кто из математиков догадывается, что ряд Фибоначчи может служить основой для арифметической записи. Каждое целое положительное число можно уникальным способом выразить как сумму некоторого набора чисел Фибоначчи, не следующих одно за другим. Знаете ли вы, что двенадцатое число Фибоначчи — квадрат двенадцати, 144? Это единственное число Фибоначчи, являющееся полным квадратом, если не считать 1. А «кубы Фибоначчи» — только 1 и 8. Другие забавные подробности см. в главе 13 моего «Математического цирка»[71].

А существует ли простой способ проверить, принадлежит ли какое-нибудь число к ряду Фибоначчи? Да, такой способ есть. Целое положительное число n является числом Фибоначчи, если (и только если) 5n2 + 4 или 5n2 — 4 представляет собой полный квадрат! Можете развлечься, проверяя какие-нибудь целые положительные числа на калькуляторе. 666 — число Фибоначчи? Нет! А 123? A 987?

И наконец — странное уравнение, объединяющее ряд Фибоначчи с последовательностью факториалов и дающее в пределе значение числа е. Подобно π, это трансцендентное число так и норовит появиться в самых неожиданных местах. Загадочную дробь мне прислал О'Ши, добавив, что нашел ее в Интернете.

Глава 11

Покрытие «изуродованных» шахматных досок с помощью L-тримино

Среди современных математиков приобрела большую популярность так называемая теория покрытий. Нижеследующий текст первоначально был опубликован в «College Mathematical Journal» (май 2009).

Введение

Пусть стандартную шахматную доску «изуродовали», удалив два крайних угловых поля, расположенных по диагонали друг напротив друга. Можно ли оставшиеся 62 квадрата покрыть с помощью 31 прямоугольной костяшки домино? Ответ — нет, потому что убранные квадраты — одного цвета. Допустим, их цвет — белый. Тогда среди оставшихся 62 полей окажутся два «лишних» черных квадрата. Между тем каждая костяшка домино покрывает одну черную и одну белую клетку. После того как мы поместим на доску 30 костяшек, две черные клетки останутся свободными. Они не могут примыкать друг к другу (иметь общую сторону), а следовательно, их невозможно покрыть при помощи костяшек домино. Эта широко известная задача, которая решается элементарной проверкой равенства, являет собой простой пример задачи покрытия изуродованной шахматной доски.

60





M. Gardner, Mathematics, Magic, and Mystery (New York: Dover, 1956).

61

N. Pandita, Ganita Kaumudi (Lotus Delight of Calculation), p. 1356:

62

D. Knuth, Art of Computer Programming, vol. 4 (Reading, MA: Addison-Wesley, 2006).

63

M. Feinberg, Fibonacci Quarterly, October 1963.

64

Разумеется, автор имеет в виду алфавит английского языка. Цифры выстраиваются по алфавиту согласно своим названиям: eight, five, four, nine, one, seven, six, three, two, zero. (Можно попробовать составить такое же число, руководствуясь более привычными нам названиями цифр: восемь, два, девять, ноль, один, пять, семь, три, четыре, шесть — 8 290 157 346. Но при делении его на 5 описанный эффект не наблюдается.)

65

Если обнаружите другие странные свойства числа 8 549 176 320, напишите мне о них через издательство «Hill and Wang». Вот еще одна особенность, на которую я набрел. Разделите наше алфавитное число на 2718 (первые цифры числа е), и вы получите число, начинающееся с 314 — первых цифр числа π! Я обнаружил также, что если 123 456 789 пять раз подряд разделить на 5, то каждый из полученных пяти результатов будет содержать все девять цифр с 1 до 9 включительно, а два результата будут содержать также и 0. (Прим. автора).

66

O. O'Shea, The Magic Numbers of the Professor (Washington, D.C.: Mathematical Association of America, 2007).

67

J. Smoak and T.J. Osier, «A Magic Trick from Fibonacci», College of Mathematics Journal 34: 58–60, January 2003.

68

Здесь и далее автор «по умолчанию» рассматривает простейший ряд Фибоначчи — 1, 1, 2, 3, 5, 8…

69

R. Graham, D. Knuth, and 0. Patashnik, «Exercise G43», Concrete Mathematics (Reading, MA: Addison-Wesley, 1994).

70

Brooke and Wall, The Fibonacci Quarterly 1: 80, 1963.

71

M. Gardner, Mathematical Circus (New York: Knopf, 1979).