Добавить в цитаты Настройки чтения

Страница 12 из 69

Искривление световых лучей гравитационным полем явилось основным предсказанием теории Эйнштейна. И оно было триумфально подтверждено наблюдениями сэра Артура Эддингтона (британский физик, 1892–1944), проведенными во время солнечного затмения 1919 года. Тогда было обнаружено искривление звездного света Солнцем, а измерения этого искривления показали их полное соответствие теоретической величине, рассчитанной Эйнштейном.

Без сомнений, эти экспедиции сыграли огромную роль для развития науки: они показали мощь истинно научного метода. Во-первых, была создана новая теория, которая поставила под вопрос существовавшую ранее. Во-вторых, случилось событие, в отношении которого конкурирующие теории дали свои предсказания. В-третьих, были собраны точные данные, и одна из теорий по праву одержала победу над другой. Помимо этого, история Эддингтона выглядит еще более привлекательно потому, что ему удалось организовать «дуэль на солнце» и свести очень сложную физику к простому углу отклонения. Если добавить экзотические места проведения экспериментов и вспомнить в качестве контрапункта о жестокостях Первой мировой войны, вы получите великолепную научную одиссею.

Однако если копнуть глубже, то окажется, что экспедиции 1918–1919 годов по изучению солнечного затмения были не более успешными, чем тысячи менее масштабных экспериментов и прошлого и настоящего. Главной причиной столь большой известности этих исследований является окончательный триумф идей Эйнштейна. Возвращаясь к экспедициям, нужно сказать: сегодня мы верим, что данные, полученные этими экспедициями в 1919 году, были точными и убедительными. Однако, как мы уже убедились в первых двух главах, это может быть не совсем так. Ученые, участвовавшие в эксперименте, очень хотели, чтобы потомки воспринимали их как первых исследователей, доказавших правоту теории относительности. Но, как показали историки науки Джон Иэрман и Кларк Глаймур, приведенные тогда свидетельства правоты Эйнштейна были совершенно недостаточными. И тут сразу возникает вопрос: почему научное сообщество с такой готовностью приняло экспериментальные «доказательства», которые таковыми по сути не являлись?

Обе экспедиции по изучению солнечного затмения состояли из английских физиков. Первую группу, которая наблюдала затмение из бразильского городка Собраль, возглавляли Эндрю Кроммелин и Чарльз Дэвидсон. Во главе второй группы были Артур Эддингтон и его помощник Э. Коттингэм, они проводили исследования на острове Принсипи, расположенном у берегов Западной Африки. Эддингтон, рожденный в английском Озерном крае, к тому времени уже был известным физиком и работал в Кембридже. Именно его интерпретация данных, полученных обеими группами, должна была стать доказательством правоты Эйнштейна. В связи с этим стоит упомянуть, что еще до отъезда на остров Принсипи он проявлял всяческие симпатии к Эйнштейну. Будучи самым активным сторонником общей теории относительности, он не скрывал, что отправляется на Принсипи, твердо надеясь доказать, что интуиция его не подводит.

Чтобы понять трудности, с которыми столкнулись ученые, сначала необходимо рассмотреть, каким оборудованием они пользовались. Группа, работавшая в Собрале, взяла с собой «астрографический телескоп» и четырехдюймовый телескоп. Группа Эддингтона имела всего лишь астрографический инструмент. Планы у обеих групп были одинаковыми: сфотографировать пучки звездного света как можно ближе к краю затмения, а затем сфотографировать те же звезды несколько позднее в других частях неба. Кроммелин должен был остаться в Бразилии, чтобы проделать эту работу, тогда как Эддингтону нужно было вернуться в Англию и продолжить исследования на экспериментальной базе Оксфордского университета.

У групп были с собой аналогичные предварительные расчеты. В зависимости от того, насколько велико будет отклонение, будет доказана правота либо Ньютона, либо Эйнштейна. Они были готовы присудить победу Ньютону, если угол отклонения составит порядка 0,8 угловой секунды, или Эйнштейну, если значение будет близко к 1,7 угловой секунды. Эта разница настолько мала, что ее можно сравнить с измерением ширины одного пенса на расстоянии одной мили. То была нелегкая задача. Если же случится так, что на момент затмения звезд, расположенных близко к краю солнечного диска, не окажется, ученым придется выбирать звезды, расположенные дальше, а это означает, что проводить измерения будет значительно сложнее, поскольку влияние Солнца на свет от таких звезд существенно меньше. Нетрудно понять, почему исключительно сдержанный Эддингтон, получив результаты измерений, близкие к тем, что предсказывал Эйнштейн, написал: «Это было самым волнующим событием на моей памяти… связанным с астрономией».



Помимо того, что нужно было измерить невероятно малые величины, обе группы столкнулись с огромным количеством и совершенно иных проблем. Самой большой из них оказалось сравнение видимого положения звезд, сфотографированных в разных участках неба и в разное время года, при разной температуре, а разница в фокусном расстоянии холодного и теплого телескопа легко могла внести искажение, сопоставимое с измеряемыми величинами. Кроме того, фотографирование солнечного затмения нужно было проводить днем, а остальное фотографирование — ночью. Помимо температуры окружающей среды на точность измерений влияла также «атмосферная турбулентность». (В результате происходило искажение фоновых изображений, в основном возникавших как следствие конвекционных потоков, которые видны невооруженным глазом, например, над жаровней для барбекю. В условиях тропиков турбулентность атмосферы представляет собой особо сложную проблему.) Вдобавок обе группы столкнулись с неблагоприятными погодными условиями, мешала частичная облачность.

Не следует забывать и о том, что транспортировка из Англии на такое большое расстояние не могла не сказаться на состоянии телескопов, тогда как малейшее воздействие, изменяющее угол фотографической пластины, способно привести к непоправимым последствиям. В дополнение ко всему солнечное затмение нужно было наблюдать в отдаленных районах, и доставка любого современного оборудования была делом нелегким. Обеим группам приходилось довольствоваться небольшими инструментами, значительно увеличивавшими время экспонирования. Все телескопы нужно было вращать в сторону, противоположную вращению Земли, чтобы они оставались нацеленными на одну и ту же точку неба. Механизмы вращения, разработанные инженерами обеих групп, явились еще одним источником погрешности.

Некоторые из этих трудностей можно было учесть и принять во внимание при проведении расчетов. Обычно это касается той части смещения звезд, которая связана с механикой телескопов и фотографического оборудования. После получения количественной оценки этого воздействия, легче выделить поведение светового луча, идущего от интересующей нас звезды. Введение соответствующей коррекции требует как минимум шесть не меняющих своего положения звезд на каждом фотоснимке. В противном случае данных для проведения статистических расчетов будет не хватать. Ни одна из групп — ни та, что была в Бразилии, ни та, что была на острове Принсипи, — не могла отрицать, что их экспериментальный метод не свободен от ошибок, которые не удалось заранее определить, поэтому они так и останутся нераспознанными.

Чтобы дать представление о том, насколько серьезными были все эти проблемы, следует упомянуть, что в 1962 году намного лучше оснащенная группа британских ученых попыталась воспроизвести результаты, полученные Эддингтоном. После неудачной попытки они заявили, что этот метод слишком сложен. В свете трудностей, рассмотренных выше, такой вывод нельзя назвать неожиданным. Нобелевский лауреат Субраманьян Чандрасекар, с которым у Эддингтона был продолжительный и во многом личный научный спор, позднее заявил, что экспедиции 1918–1919 годов лишь отчасти были вызваны научным интересом. Он высказал предположение, что Эддингтон влез в это довольно бесперспективное дело, дабы избежать воинской службы в годы Первой мировой войны. До сих пор это заявление Чандрасекара никто не опроверг.