Страница 39 из 47
Ксенон принадлежит к группе элементов, называемых инертными газами (по причине их химической инертности). Их также называют редкими газами (они редко встречаются) или благородными газами (обособленное положение, которое они занимают по причине своей химической инертности, может показаться признаком особой значительности).
Ксенон — самый редкий из стабильных инертных газов и самый редкий из всех устойчивых химических элементов на Земле. Ксенон встречается только в атмосфере, где составляет 5,3 весовых единиц на миллион. Наша атмосфера весит 5 500 000 000 000 000 (5,5 квадриллионов) тонн, — это означает, что запас ксенона на планете 30 000 000 000 (30 миллиардов) тонн. На первый взгляд это много, но выделить атомы ксенона из огромного количества остальных составляющих частей атмосферы — весьма сложная задача. Поэтому ксенон не является обычным элементом и никогда таким не станет.
Да и в химических лабораториях ксенон вовсе не популярен. Его химические и физические свойства были определены, но что с ними делать дальше? Уже будучи открытым, ксенон долгое время оставался чужаком в семье химических элементов.
Но затем в 1962 году было объявлено о проведении необычного эксперимента с участием ксенона. И с тех пор ни одни из номеров специальных химических журналов не обходится без статей о ксеноне.
Что же произошло?
Вы ждете быстрого и краткого ответа? Тогда вы плохо меня знаете. Я, как всегда, выберу свой любимый кружной путь и начну с того, что ксенон является газом.
Стать газом — это дело случая. Ни одно вещество не является газом от природы, просто иногда это диктуется температурными условиями. На Венере вода и аммиак — газы. На Земле аммиак — газ, а вода — жидкость. На Титане ни одно из этих веществ газом не является.
Далее мне потребуется некий критерий, который поможет в дальнейших рассуждениях. Пусть, например, любое вещество, остающееся в газообразном состоянии при -100 °C (-148° F, является Газом (с прописной буквы). Такая температура никогда не достигается па Земле даже в Антарктике, славящейся своими зверскими зимами, поэтому Газов па Земле нет, только газообразное состояния отдельных веществ (или полученных в химических лабораториях).
Тогда почему Газ — это Газ?
Для начала скажу, что любое вещество состоит из атомов или групп атомов, называемых молекулами. Между атомами или молекулами действуют силы притяжения, удерживающие их рядом. Тепло сообщает этим атомам или молекулам определенную кинетическую энергию, которая стремится оторвать их друг от друга, потому что каждый атом и молекула знают, куда им хотелось бы отправиться. (Поймите меня правильно, я вовсе не хочу сказать, что атомы знают, что делают, то есть обладают сознанием.
Просто это мой телеологический[9] способ ведения беседы. И пусть телеология запрещена для использования в научных статьях, по… сладок именно запретный плод.)
Силы притяжения между определенными атомами или молекулами обычно постоянны, однако кинетическая энергия изменяется с изменением температуры. Поэтому, если температура поднимется достаточно высоко, любая группа атомов или молекул разлетится по сторонам и вещество станет газом. При температуре выше 6000 °C все известные вещества становятся газами.
Конечно, существует очень немного веществ, межатомные или межмолекулярные силы в которых настолько велики, что для их преодоления необходим нагрев до 6000 °C. У многих веществ они, напротив, настолько слабы, что тепло обычного солнечного дня сообщает достаточно энергии для перехода в газообразное состояние. Пример обычный медицинский анестетик.
У других веществ силы межмолекулярного притяжения еще слабее, и для их поддержания в газообразном состоянии вполне достаточно тепла при температуре-100 °C. Они являются Газами, о которых я веду речь.
Межмолекулярные или межатомные силы возникают из-за распределения электронов в атомах или молекулах. Электроны распределены среди различных электронных оболочек, согласно системе, в подробности которой я вдаваться не буду. Например, атом алюминия содержит 13 электронов, распределенных следующим образом: 2 — во внутренней оболочке, 8 в еле-дующей, 3 — в наружной. Таким образом, распределение электронов в атоме алюминия можно обозначить следующим образом: 2,8,3. Внутренняя оболочка может содержать только 2 электрона, следующая — 8 электронов, а каждая из последующих может содержать больше 8 электронов. Если не считать ситуации, когда только внутренняя оболочка содержит электроны, у атомов в стабильном состоянии в наружной оболочке 8 электронов.
Известно шесть элементов, находящихся в состоянии максимальной стабильности.
Другие атомы, где электроны распределены не так удачно, вынуждены пытаться достичь этого, захватывая дополнительные электроны или освобождаясь от имеющихся. В процессе этого они подвергаются химическим превращениям. Однако атомы шести перечисленных выше химических элементов не нуждаются в подобных ухищрениях. Они вполне самодостаточны. У них нет необходимости в перемещении электронов, поэтому они не принимают участия в химических реакциях и являются инертными.
(По крайней мере, именно это я заявил бы до 1962 года.)
Атомы семейства инертных газов являются настолько самодостаточными, что эти атомы даже игнорируют друг друга. Между ними существует очень слабое притяжение, и эти вещества остаются газами при комнатной температуре. Все, кроме радона, являются Газами.
Какое-то притяжение между атомами, конечно, существует (в природе нет атомов или молекул, между которыми притяжение отсутствует вообще). Если некоторое время понижать температуру, наступит момент, когда силы притяжения возобладают над разрушительным действием кинетической энергии, и инертные газы станут инертными жидкостями.
А как обстоят дела с другими элементами? Как я уже говорил, в их атомах электроны распределены так, что обеспечивают устойчивость ниже максимальной. Каждый обладает тенденцией к перераспределению электронов в сторону увеличения устойчивости. Например, в атоме натрия Na электроны распределены следующим образом: 2,8,1. Избавившись от электрона во внешней оболочке, он приобрел бы устойчивое распределение 2,8, как у атома неона Ne. Атом хлора Cl имеет распределение 2,8,7. Если бы он смог приобрести один электрон во внешнюю оболочку, получился бы вполне устойчивый атом 2,8,8 — такое распределение электронов у инертного аргона.
Следовательно, если атом натрия встретится с атомом хлора, перенос электрона из одного атома в другой устроит обоих. Однако потеря отрицательно заряженного электрона оставляет атом натрия с дефицитом отрицательного заряда, что создает избыток положительного заряда. Атом превращается в положительно заряженный ион Na+). Атом хлора, получивший дополнительный электрон, приобрел избыточный отрицательный заряд и стал отрицательно заряженным ионом (Cl-).
Разноименные заряды притягиваются, поэтому ионы с разными зарядами окажутся притянутыми друг к другу. Сильное притяжение не может быть преодолено кинетической энергией, которой обладают атомы при комнатной температуре, поэтому ионы держатся друг за друга достаточно крепко, чтобы образовавшееся вещество NaCl — обычная поваренная соль — было твердым. Оно не переходит в газообразное состояние до достижения температуры 1413 °C.
Теперь рассмотрим атом углерода. Распределение электронов — 2,4. При потере 4 электронов он мог бы приобрести устойчивую конфигурацию 2, как в атоме гелия. При приобретении 4 электронов конфигурация стала бы 2,8, как в атоме неона, тоже устойчивая. Приобрести или избавиться от такого количества электронов сразу весьма непросто, поэтому атом углерода предпочитает понемногу делиться своими электронами. Он может выделить один электрон в совместное пользование своему соседу, который также отдаст для этой цели один электрон. В результате у двух соседних атомов углерода два электрона будут общими. Другой электрон можно выделить для совместного владения с другим соседом и т. д. Поэтому каждый атом углерода обычно окружен четырьмя другими.
9
Телеология — философское учение, приписывающее процессам или явлениям природы цели (целесообразность или способность к целеполаганию), которые установлены Богом или являются внутренними причинами природы. (Примеч. пер.)