Добавить в цитаты Настройки чтения

Страница 14 из 22



Не спутать, однако, стоящую волну со стоячей. Последняя фактически есть один из случаев интерференционной картины − так сказать, предельно возможный её случай, но и только. Первая же − производное явления под названием "движение среды перенесения". Если бросить в реку камень, по поверхности пойдёт круговая волна. Так вот та часть её фронта, что движется против течения − параллельно ему, может оказаться несмещающейся относительно тебя, стоящего на берегу. Если скорость речного течения достаточно велика. То и будет стоящая волна − для тебя. Но не для массы речной воды: относительно неё та волна исправно бежит − с той же скоростью, какую имела бы относительно стоячей воды озера (брось вы в него точно такой же камень, и точно так же).

Ещё раз. В случае стоячести − волна неподвижна и относительно того агента, который волнуется (если, скажем, волна на глади озера − то относительно воды). А в случае стоящести − не неподвижна относительно такого агента: движется как обычно.

Для порядка приведём пример стоячих волн. Волнение от колеблющей воду доски доходит до пирса, отражается от него и идёт назад, тем налагаясь на самоё себя (интерференция!), и оттого поступательно останавливаясь и относительно воды (ну, водной поверхности), и относительно пирса. Остановка такая понятна: волнение, противоходно наложенное на самоё себя, в одну сторону тогда за единицу времени проходит ровно столько, сколько в противоположную, а значит − фактически стоит.

Так что и у света не будем путать стоящую и стоячую волны. Последняя, ежели у света её таки можно экспериментально добиться, фактически суть крайний случай его интерференции. А первая − явление сугубо относительное. Относительно нас, пребывающих за пределами горизонта событий чёрной дыры, световолна безусловно стоит, то бишь не идёт к нам, а значит − и не доходит до нас от той дыры как небесного тела. Потому-то мы ту световолну и не воспринимаем (читай: не видим чёрную дыру). И относительно материи чёрной дыры она, думаю, тоже стоит. А вот относительно пространства − движется, причём с характерной световой скоростью. Как то и положено свету. Пространство, значит, приоритетный определитель светоскорости! И даже надо сказать круче − единственный настоящий её определитель. Поскольку остальные, как видим, могут давать сбой, зануляясь. К таковой роли вакуум-пространства для света − мы подробнее вернёмся позже, когда читатель будет больше поднаторевшим в разводимых нами идеях.

Но как же одинаковость скорости света относительно любого мат. предмета − из всех наличных во Вселенной на разбираемый момент, в каком бы состоянии движения они ни прибывали? Об этом выскажемся, но сначала разберём, как такую неизменность светоскорости примирить − для световолнового цуга, уходящего от небесного тела по нормали к его поверхности − с наводимой тем телом квазиперекачкой пространства из-под заднего "торца" того цуга − под его передний "торец"? Она что же, не сносит цуг назад, тем замедляя его относительно нас, рассматривающих то небесное тело? Или хотя бы относительно самого того тела? То есть фронтального сноса световой волны квазисдвигающимся в самом себе пространством − нет? Нет, и залогом тому − так называемое гравитационное красное смещение, как опытный факт. На уходящую от него световую волну мат. тело влияет лишь тем образом, что увеличивает её длину − для наблюдателя, к которому она летит от того тела, при неизменности расстояния между ним и телом. Точно как длина увеличивается для нас, ежели волна испускается телом, достаточно быстро уходящим от нас (это, так сказать, обычное красное смещение, негравитационное). В русле нашей идеи тяготения напрашивается утверждение, что оба красных смещения есть одно и то же: влияемость "набегающего" пространства на непосредственный испускатель световой волны. Совсем конкретно говоря, на "выстрел" возбуждённого атома, волнующий светоносную среду. Такой "выстрел" − переход электрона с врéменной высокой орбиты на постоянную низкую, переводящий атом из возбуждённого в нормальное состояние и испускающий порцию света. И "выстрел" это потому, что подобное движение элемента электронной оболочки атома "бьёт" по границе вселенского пространства с эфиром, вспучивая её и тем полагая начало световой волне. Что же касается "набегания" пространства, то в разбираемых случаях (ну, гравитационного и обычного красных смещений) оно возникает разным путём касательно тела, но это − несущественная разница, ибо главное, что оба раза оно присутствует и одинаково срабатывает.

Итак, утверждение, что оба красных смещения есть одно и то же: влияемость "набегающего" пространства на непосредственный испускатель световой волны. Всё действительно так! Ведь естественное состояние мат. тела в пространстве района Солнца − увеличивающеся-ускоренное падение на Солнце, но происходящее без испытываемости ускорения. Ускорением обладает, но не испытывает его! Такого вот сорта удаляемость от нас тела, ежели находится оно меж нами и Солнцем, к которому мы как наблюдатели неподвижны, причём удаляемость то − без испытываемости видимого удаляющего воздействия. А это заставляет подозревать, что не тело взаимодействует с пространством, а пространство с телом! То есть что пространство района Солнца активно, и способно предъявить собой свету те условия, в какие ставит свет по отношению к пространству тело, удаляющееся от нас со светоиспусканием в нашу сторону (имеется в виду, что последнее − это уже вдали от Солнца, дабы теоретически не портилась картина). Сказать короче, идущий от Солнца свет заставяляет краснеть для нас особый режим тамошнего пространства.





Итак, околосолнечное пространство пребывает во внутреннем режиме, имитирующем удаляемость от нас всякого тела, расположенного в нём меж Солнцем и нами с неподвижностью (вместе с нами) относительно Солнца. И свет, идущий к нам от такого тела, реагирует на этот режим уменьшением для нас своей частоты. Как, впрочем, и свет от самого Солнца.

Логику разводить здесь возможно и вот ещё как. В случае уходящести от нас тела (как случае непрерывной ставящести им меж собой и нами дополнительного пространства) можно считать, что между нами и смотрящей на нас стороной его, самим по себе стоящего касательно нас, непрерывно возникает новое (ну, дополнительное) пространство. И точно то же происходит с телом, зафиксированным в гравитационном поле звезды (ну, находящимся в состоянии покоя относительно неё): организуемая звездой "перекачка" пространства от ближнего к ней конца тела − к дальнему и оказывается появлением дополнительного пространства за тем дальним, то есть меж ним и нами (мы ведь расположены за телом ещё дальше от звезды − в наблюдательной неподвижности относительно неё). Значит, можем считать, что это тело самочинно уходит от нас в сторону звезды − в "неподвижном" зато уже пространстве. И, стало быть, должно давать нам негравитационное красное смещение у света, им испускаемого в сторону нас. Теоретизационный круг замкнулся! Такая вот демонстрация обратимости в отношениях пространства с пребываяющими в нём телами.

Также ясно, что ежели наблюдаете достаточно быстро уходящее от вас и притом достаточно массивное тело, то приходящий к вам его свет оказывается при удвоенном красном смещении, так сказать. Одно из-за его ухода от вас, а второе − из-за его гравитации.

Какова физическая конкретика влияния "набегающего" пространства на "выстрел" возбуждённого атома? Такового атома, содержащегося в теле, на которое "набегает" пространство, а? Ну, скорость убегания от нас тела вычитается из скорости того элемента атома, что "бьёт" по пространственно-эфирной границе, отчего "удар" получается более вялым и возбуждает более пологую − читай: более красную − световую волну. Так потому, что атом поверхностного телесного слоя свой "удар" по границе всегда направляет в сторону, куда смотрит тело. (Ну, в смысле, проводит за счёт именно этой стороны, из чего, однако, нисколько не следует, что пространственно-эфирная граница именно в этой стороне и лежит, − не стоит "покупаться"! Тут подобно, как с кормы корабля бросаете камень − против хода того корабля: водная поверхность вовсе не лежит тогда в направлении броска, но камень её таки достигает, тем прилагая к ней сообщённую ему вами скорость, уменьшенную вычетом из неё скорости корабля.) Убегающее от нас тело "смотрит на нас" − в смысле, что атомам поверхностного слоя своего задника оставляет открытым пространство только в нашу сторону, прочие собой от них заслоняя. Вот "удары" атомов в эту сторону и происходят. Ну, в смысле, за счёт использования этой стороны и реализуются.