Страница 32 из 34
Рис. 64. Самолет И-15 с установленными на нем прямоточными воздушно-реактивными двигателями
С оглушительным ревом проносится истребитель над головами присутствующих на аэродроме. И вдруг словно какая-то могучая сила швыряет самолет вперед, заставляет его мчаться с еще большей скоростью — это заработали включенные летчиком прямоточные воздушно-реактивные двигатели. Огненные струи хлещут из сопел обоих двигателей — приборы показывают увеличение скорости полета на 21 км/час.
Это был первый в мире полет самолета с воздушно-реактивными двигателями. Он состоялся, в частности, за 8 месяцев до разрекламированного за рубежом полета итальянского самолета Кампини, на котором был установлен так называемый мотокомпрессорный воздушно-реактивный двигатель, не нашедший потом практического применения.
Позднее испытания прямоточных двигателей Меркулова были произведены на самолетах-истребителях «Чайке» и Як-7. При этом прирост скорости полета достигал 53 км/час.
Так произошло рождение прямоточного воздушно-реактивного двигателя. Он заявлял свое право на жизнь. Начались годы напряженной работы по его усовершенствованию.
Экспериментальные исследования прямоточного воздушно-реактивного двигателя связаны с исключительными трудностями, так как через него ежесекундно протекают с огромной скоростью десятки и сотни кубических метров воздуха. Чтобы создать такой поток воздуха при испытании, нужны грандиозные воздуходувные установки мощностью в десятки и сотни тысяч лошадиных сил. Такие установки — аэродинамические трубы сверхзвуковых скоростей непрерывного действия — созданы, но они являются уникальными. Иногда для испытаний прямоточных воздушно-реактивных двигателей применяются и более простые установки, так называемые трубы периодического действия. В этом случае воздух заранее нагнетается под давлением в громадный бак — ресивер, откуда он во время испытаний подается в аэродинамическую трубу. Но относительная простота этих установок (в действительности же они не так просты) покупается дорогой ценой — часами накачивается ресивер для того, чтобы потом можно было провести минутное испытание.
Сложность и дороговизна экспериментальных исследований прямоточных воздушно-реактивных двигателей являются одной из причин того, что эти двигатели отстают в своем развитии от других реактивных двигателей. Поэтому непрерывно изыскиваются новые методы исследования прямоточных воздушно-реактивных двигателей. В частности, для этого иногда используются ракеты. Передача показаний приборов с летящей ракеты осуществляется при этом по радио при помощи сложной радиотелеметрической системы. Такая же система используется в тех случаях, когда испытания прямоточного воздушно-реактивного двигателя осуществляются путем сбрасывания его с летящего самолета; один из прямоточных двигателей, предназначенных для таких испытаний, показан на рис. 65. Широко применяется также установка прямоточных двигателей на самолете: над фюзеляжем (см. рис. 46), на концах крыльев (рис. 66) и т. д.
Основным недостатком прямоточного воздушно-реактивного двигателя является то, что он способен развивать тягу только в полете с большой скоростью. На малой скорости его тяга ничтожна, а на стоянке она вовсе равна нулю. Чтобы прямоточный двигатель начал работать, нужна скорость полета порядка 250 км/час, а для взлета — не менее 650—700 км/час. Значит, для взлета и разгона самолета (или снаряда) с прямоточным воздушно-реактивным двигателем на нем должен быть установлен одновременно двигатель какого-либо другого типа. Это может быть поршневой двигатель, как, например, было при испытаниях первых прямоточных воздушно-реактивных двигателей. Но поршневой двигатель не пригоден для летательных аппаратов, предназначенных для полета со сверхзвуковыми скоростями. Поэтому в качестве стартового двигателя на скоростных самолетах должен быть установлен какой-нибудь реактивный двигатель: турбореактивный, ракетный или пульсирующий. Этот двигатель разгоняет самолет до необходимой скорости, а затем он выключается и начинает работать прямоточный воздушно-реактивный двигатель.
В некоторых случаях, например на снарядах, стартовый двигатель может вообще отсутствовать. Разгон снаряда до скорости, при которой включается в работу прямоточный воздушно-реактивный двигатель, осуществляется в этом случае с помощью специального стартового устройства — катапульты.
Рис. 65. Сверхзвуковой прямоточный воздушно-реактивный двигатель, предназначенный для сбрасывания с самолета с целью испытания его при скорости полета, в 2,5 раза превышающей скорость звука
Рис. 66. Прямоточные воздушно-реактивные двигатели, установленные на крыльях самолетов:
а — самолет с поршневым двигателем; б — реактивный самолет
Необходимость в добавочном стартовом двигателе заставляет конструкторов и ученых работать над созданием такого двигателя, в котором прямоточный воздушно-реактивный двигатель органически сочетался бы с двигателем другого типа в единой конструкции. Это позволило бы не только осуществить самостоятельный взлет самолета, но и решить задачу наиболее экономичной работы на разных режимах полета. Так, например, если бы удалось сочетать в едином устройстве турбореактивный и прямоточный воздушно-реактивный двигатели, то при взлете и в полете с относительно небольшими скоростями двигатель работал бы как турбореактивный, а при сверхзвуковых скоростях полета — как прямоточный. Естественно, что это привело бы к уменьшению расхода топлива и, таким образом, к увеличению дальности полета.
Как же можно представить себе такое органическое сочетание турбореактивного и прямоточного двигателей? Оказывается, одно возможное решение этой задачи подсказывается самой жизнью, развитием реактивной авиации.
Рис. 67. Форсажная камера. Принципиально ее устройство аналогично устройству прямоточного воздушно-реактивного двигателя
Выше указывалось, что для кратковременного повышения тяги турбореактивного двигателя в настоящее время широко используются так называемые форсажные камеры (см. рис. 37).
Если внимательно присмотреться к форсажной камере, то бросается в глаза большое сходство ее с прямоточным воздушно-реактивным двигателем (рис. 67). Действительно, в передней части камеры обычно имеется диффузор, в котором происходит уменьшение скорости и соответственно увеличение давления газов, выходящих из двигателя, — это необходимо для обеспечения устойчивости сгорания в форсажной камере и для увеличения ее коэффициента полезного действия. За диффузором следует обычно цилиндрическая камера сгорания с горелками. Наконец, последней частью форсажной камеры является реактивное сопло.
Таким образом, форсажная камера имеет основные части прямоточного воздушно-реактивного двигателя. По существу она и представляет собой прямоточный воздушно-реактивный двигатель, поставленный непосредственно за турбореактивным.
Так как увеличение тяги с помощью форсажной камеры является невыгодным, то она используется только кратковременно, например, в воздушном бою, при взлете и т. д. Однако с увеличением скорости полета форсажная камера становится все более выгодной. Действительно, в результате скоростного напора на входе в турбореактивный двигатель давление за турбиной и, следовательно, в форсажной камере с ростом скорости полета увеличивается. Поэтому прирост тяги, который создает форсажная камера при сжигании в ней одного и того же количества топлива, с ростом скорости полета увеличивается, а расход топлива на 1 кг тяги, следовательно, уменьшается. Наконец, когда скорость полета становится значительно больше скорости звука, форсажная камера может стать даже выгоднее турбореактивного двигателя, на котором она установлена. В этом случае имеет смысл полностью отключить турбореактивный двигатель и направлять весь воздух в обход его прямо в форсажную камеру. При этом форсажная камера работает уже как самостоятельный прямоточный воздушно-реактивный двигатель.