Добавить в цитаты Настройки чтения

Страница 53 из 57

Так что же, в конце концов, выгоднее с точки зрения затраты топлива- обычная современная ракета или «космический тихоход»?

Наша гонка вокруг Москвы не дает ответа на этот вопрос, хотя бы потому, что взлет космической ракеты осуществляется, как известно, вертикально вверх. Поэтому соревнование «тихохода» с такой ракетой должно представлять собой уже гонку по вертикали, что вносит существенные поправки.

Чтобы ракета оторвалась от пускового стола и взлетела, на нее должна действовать вверх сила, превосходящая собственный вес ракеты. Такой силой является реактивная тяга двигателя — сила реакции вытекающей из него струи газов. Если эта сила будет в точности равна весу ракеты, то ракета не взлетит или же, взлетев, повиснет неподвижно в воздухе, подобно вертолету. Чуть возрастет сила — и ракета станет подниматься. Если сила постоянна, то и ускорение ракеты будет постоянным (если не учитывать изменения массы ракеты из-за расходования топлива, а также влияния сопротивления воздуха), то есть ракета будет двигаться равноускоренно. Но ведь именно таков закон движения «тихохода». Разве ракета и есть «тихоход»?

Действительно, в самом начале взлетающая ракета движется с очень небольшой скоростью, как и наш «тихоход». Создается даже впечатление, будто она и не движется вовсе, а находится в каком-то раздумье: не то взлетать, не то нет. Но потом она летит все быстрее, и очень скоро ее след тает в небе. Это стремительное нарастание скорости объясняется тем, что обычно сила тяги значительно превосходит вес ракеты. Помните, какие огромные перегрузки действовали на наших космонавтов в кабине корабля «Восток» в момент взлета? Увеличенный в несколько раз собственный вес вжимал, вдавливал их в сиденье. Это объяснялось тем, что ускорение ракеты в несколько раз превосходило ускорение свободного падения тел, то есть то нормальное ускорение силы тяжести, с которым связано появление обычного веса каждого из нас здесь, на Земле.

Если, например, вес взлетающей ракеты равен 100 тоннам, а сила тяги двигателя равна 200 тоннам, то и вес космонавта при взлете будет из-за перегрузки вдвое больше обычного, а ракета будет взлетать вверх с ускорением, равным нормальному, — скорость ракеты будет возрастать каждую секунду на 10 метров в секунду. Обратите внимание, это важно — ускорение взлетающей ракеты не в два раза больше обычного, а только равно ему, хотя перегрузка равна двум. Это легко объяснимо: чтобы ракета не падала вниз под действием силы тяжести, двигатель должен создавать тягу, равную весу ракеты. Значит, эта тяга не будет создавать ускорения ракеты, хотя топливо будет расходоваться. Только тяга, избыточная над весом, начнет разгон ракеты.

Но зачем нужно осуществлять разгон ракеты с таким большим ускорением, если перегрузки очень неприятно действуют на космонавтов да и на ракету тоже? Не лучше ли не торопиться й несколько увеличить продолжительность взлета, хотя бы, например, вдвое? Кстати, это будет выгоднее и потому, что понадобится менее мощный, а следовательно, и более легкий двигатель, да и вес ракеты будет меньше. Что же этому мешает?

Может быть, ракетные двигатели не в состоянии работать вдвое большее время, допустим, не 5–6, а 10–12 минут подряд? Действительно, создание таких долгоработающих двигателей — сложная задача, ибо ракетные двигатели работают в невиданно сложных условиях, не встречающихся в двигателях других типов. Но все же современная ракетная техника в состоянии создать нужные двигатели.

Тогда, может быть, нельзя осуществить такой замедленный взлет потому, что трудно управлять медленно взлетающей ракетой? Действительно, это очень плохо, что в течение большого времени после старта ракета движется с очень малой скоростью. Ведь даже небольшой порыв ветра может оказаться в этом случае губительным. И все же и с этой трудностью современная техника тоже может справиться.

Выходит, можно попробовать устроить нужную нам гонку по вертикали. Вот стоят рядышком на пусковых столах обычная ракета и наш «тихоход». Мерно отсчитывает метроном секунды: «…Три… Два… Один… Старт!» Первые мгновения оба соревнующиеся аппарата движутся, кажется, одинаково медленно, затем дело резко меняется — ведь ускорение «тихохода» (мы его считаем прежним) в 30 000 раз меньше, чем ракеты, если для нее оно равно 30 м/сек?. Прошла минута, и ракета, давно скрывшаяся в небе, мчится уже со скоростью 1,8 километра в секунду, тогда как скорость «тихохода» равна всего 6 сантиметрам в секунду. За эту минуту он поднимется всего на 1,8 сантиметра, а ракета умчится на 54 километра. Но нас теперь все это уже не пугает, мы знаем, что «тихоход» похож на улитку только в начале пути, а потом берет свое. Кто же все-таки победит в соревновании?





Мы догадываемся, что в конце концов победа будет на стороне того, кто совершит взлет с меньшей затратой топлива, и начинаем думать, что тут-то победителем окажется «тихоход» — иначе зачем было автору рассказывать все это? Но оказывается, что «тихоход» безнадежно проиграет…

Помните, ваше внимание было специально обращено на несоответствие между тягой и ускорением взлетающей ракеты? Когда двигатель ракеты развивает тягу, в точности равную весу, то хотя он ежесекундно поглощает целую реку топлива, ракета будет висеть в воздухе неподвижно, опираясь на огненный водопад вытекающих из двигателя газов. Стоит чуть увеличить тягу, и ракета тронется вверх, появится ускорение. Неудивительно, что при малом ускорении, как в случае «тихохода», оно достается ценой очень большой траты топлива, — так сильно сказывается обязательный «довесок» в виде расхода топлива на создание тяги, равной весу ракеты. Когда ускорение возрастает, то относительное влияние этого «довеска» становится, естественно, меньше. Следовательно, уменьшается и затрата топлива на единицу ускорения ракеты (ученые говорят, что уменьшаются гравитационные потери при взлете).

Если весь взлет с разгоном ракеты осуществляется вертикально, то «тихоход» затратит на него примерно в 7500 раз больше топлива, чем ракета. Такой взлет не просто невыгоден, он, невозможен. Выходит, вертикальную гонку «тихоход» действительно проигрывает по всем статьям…

Значит, идея применения «тихохода» в космосе абсурдна?

Конечно, рассказ этот ведется не зря, на «тихоходах» еще рано ставить крест. Прежде всего, вертикальный взлет космических ракет длится, в общем, недолго. Как только они пересекают нижние, плотные слои атмосферы, так тотчас же переходят с вертикального на наклонный, а затем и горизонтальный полет. Собственно, невыгодный вертикальный взлет и нужен лишь для того, чтобы как можно быстрее пересечь толщу плотной атмосферы, полет в которой связан, в свою очередь, со значительными дополнительными потерями топлива на преодоление сопротивления воздуха. Но как только плотный воздух позади, можно переходить на полет по горизонтали, когда вредное действие земного тяготения уже не сказывается и гравитационные потери отсутствуют. Тут уже можно бы найти применение и «тихоходу», но все же он будет уступать обычной ракете.

Область, где «тихоход» ни в чем не уступит, иная. Представьте себе, что космический корабль уже вышел на орбиту искусственного спутника Земли. Позади — трудный взлет, атмосфера, перегрузки. Достигнута орбитальная, или первая космическая скорость. Теперь уже, если двигатель будет выключен, корабль станет бесконечно долго обращаться вокруг Земли. А если снова включить двигатель? Раз двигатель уже не должен своей тягой компенсировать вес корабля и преодолевать сопротивление воздуха, то любая, даже самая небольшая тяга вызовет ускорение. «Довеска», о котором говорилось выше, более не будет.

Значит, тут уже нет необходимости в сверхмощных ракетных двигателях, развивающих тягу в сотни тонн и поглощающих ежесекундно тонны топлива. Даже самый крохотный двигатель с тягой, меньшей веса корабля в тысячи раз, заставит корабль двигаться с ускорением (вспомните космические «каравеллы», о которых шла речь в предыдущей главе). И пусть это ускорение будет очень небольшим, все же со временем оно сильно увеличит скорость корабля, например, до скорости отрыва, когда корабль полностью разорвет цепи земного тяготения и отправится в межпланетный полет, от орбиты вокруг Земли к орбите вокруг Марса или другой планеты назначения. В таком межорбитном полете действительно годится и «тихоход», тут уж вовсе не обязательно разгонять корабль быстро, можно и медленно.