Добавить в цитаты Настройки чтения

Страница 6 из 82



В то время Ферсман еще не был всецело готов к восприятию этих глубоких идей, ню с тем большей яркостью они должны были вспыхнуть в его сознании позже.

Пока же он упрямо настаивал на своем.

— Я люблю камень таким, каков он есть! — восклицал юноша, продолжая бесплодные попытки доказать своему собеседнику, что он не изменил своей привязанности. — Я хочу полюбить его еще больше, но уже в народных сказках, в народном эпосе, в поэтических образах изящной литературы. Я хочу узнать его всюду, где он вдохновляет художника, служит ваятелю, открывает простор фантазии поэта.

Ферсман стремился утвердить право на существование новоявленного минералога-искусствоведа.

Борьба Меликишвили за Ферсмана — испытателя природы — была энергично поддержана кафедрой физики.

Борис Петрович Вейнберг также не мог остаться безразличным к судьбе талантливого юноши. Науке он сам был предан поистине самозабвенно. Он любил природу жизнерадостно и шумно, подчас даже буйно, кидаясь от одной проблемы к другой, стремясь охватить больше, чем позволяли человеческие силы. Предметом его особой страсти было постижение гармонии во всех частях природы. Ключом к этому постижению он считал законы образования кристаллов — этих стройных, бесконечно разнообразных атомных построек.

На досуге он подсчитывал неиспользуемые человечеством силы природы, заключенные в порывах ветра, в рассеянном тепле солнечных лучей, и дерзко требовал их полного обуздания и использования, хотя в стране не было еще ни одной путной электрической станции, работающей хотя бы на водной энергии.

Б. П. Вейнберг принадлежал к той славной плеяде русских популяризаторов знаний, которые во главе с Тимирязевым, Столетовым и Умовым добились того, что и в невероятно тяжких условиях казарменного строя дореволюционной России научная мысль прогрессивных слоев русского общества находилась все же на исключительной высоте.

Лекция по молекулярной физике Вейнберг читал вдохновенно. Ферсман посещал их, сначала по обязанности, затем, покинув физико-математический факультет, из чистого интереса. Вейнберг не щадил сил, чтобы этот интерес укрепить. Никто не подозревал, что в его изложении встречались разделы, посвященные исключительно Ферсману, хотя остальные слушатели воспринимали их не менее восторженно.

Вейнберг знал о минералогических увлечениях Ферсмана и начинал свой рассказ о строении вещества с описания сложных природных тел — горных пород. Он представлял их как накопление различных типов молекулярных построек — минералов.

От более сложных тел он переходил к более простым.

Но просты ли они, эти простые?

Что, казалось бы, может быть проще кристалла, с геометрической правильностью его граней и закономерной повторяемостью его углов? Но эта кажущаяся простота обращается в изумляющую сложность, как только мы изменим характер и масштабы наших наблюдений. Когда мы доходим до атома, кристалл предстает нашему мысленному взору уже стройной системой атомной решетки[10].

Все окружающие нас предметы построены по строгим правилам взаимодействия атомов. Повсюду в природе в структуре земных веществ проявляются законы кристаллов. Лишь немногие вещества состоят из хаотических аморфных скоплений отдельных частей.

Дойдя до решеток и сеток, составленных из мельчайших атомов, Вейнберг возвращался в привычный нам мир слитных структур — твердого тела. Но этот привычный мир уже воспринимался иначе.

Современное естествознание не только расширяет, но и углубляет картину мироздания.

Вейнберг был автором отличной книги «Снег, иней, град, лед и ледники», которая лишь недавно стала казаться нам несколько упрощенной в сопоставлении с усложнившейся картиной жизни кристаллов льда, созданной новыми поколениями исследователей. Он охотно возвращался в своих лекциях к этому важнейшему и плохо изученному минералу нашей природы — твердой воде.

Морозные цветы на оконных стеклах и бесконечное разнообразие снежинок — это все кристаллические формы минерала, носящего общеизвестное название льда. Этот, обычно временный, периодически возникающий, минерал в полярных областях представляет собой типичную горную породу. Он проявляет в отдельных случаях ряд загадочных свойств, которые могут быть объяснены только своеобразием условий его образования.

Нашлись энтузиасты, которые без конца ловили хрупкие, тающие от дыхания снежинки на шелковые сетки и систематически зарисовывали их. Рисунки заполняли альбом за альбомом и все же никак не могли исчерпать всего разнообразия их строения.



Шестиугольная форма снежинок, очевидно, находится в связи с гексагональной[11] формой кристаллов льда. Однако возникает простой и все же не легкий вопрос: почему шесть лучей каждой снежинки так похожи один на другой и в то же время так сильно отличаются от лучей всякой другой снежинки? Каждая такая шестиугольная конструкция вырастает из какого-то ядра в атмосфере водяного пара. Почему по-разному протекает их рост?

Опираясь на новые знания об атомных связях, Вейнберг раскрывал перед своими слушателями механизм образования ледяных кристаллов непосредственно из пара, минуя жидкость как промежуточную фазу. Он показывал, что характер роста снежинок зависит от условий, при которых этот рост происходит. Нельзя понять минерал в отрыве от среды, в которой он сформировался.

Если в окружающем пространстве много пара или низка температура, кристаллизация ускоряется. Рост идет не только на концах лучей, но и на вспомогательных ветках. Если же снежинка перенеслась в пространство с малой плотностью пара или попала в условия относительного тепла, то молекулы воды не только медленнее отлагаются на лучах шестиугольной звезды, но даже склонны отрываться от концов снежинки. В конце концов ветви снежинок укорачиваются и даже могут закруглиться, а сама снежинка утолщается.

Снежинки сами по себе невелики, часто не более нескольких миллиметров в диаметре. Условия их «жизни» примерно одинаковы во всех точках. Если удлиняется один луч, то соответственно удлиняются и остальные. Если заполняются пространства вблизи от центра, то же самое происходит вдоль всех шести лучей.

Снежинки падают на землю в самых разнообразных условиях и приобретают множество различных форм, в то время как все лучи каждой отдельной снежинки остаются совершенно сходными.

Форма снежинки говорит нам об истории тех изменений в атмосферных условиях, которые ей пришлось пережить[12].

Вейнберг-физик обращался за примерами к живой природе, чтобы ими иллюстрировать закономерности, которые определяют структуру вещества.

Только много лет спустя, когда процессы образования любых минералов стали изучать неотрывно от среды, в которой они протекают, Ферсман мог в полной мере оценить глубину мыслей, заложенных в лекции его наставника!

Но и тогда приводимые Вейнбергом примеры в кипучем воображении молодого минералога, — а Ферсман все-таки в глубине души оставался минералогом! — объединялись с другими примерами, которые ему подсказывала в лице Меликишвили химия — наука о бесчисленных превращениях конкретных веществ во всем богатстве их индивидуальных особенностей.

Да, каждый минерал, несомненно, должен иметь свою историю. Своеобразное сочетание внешних условий определило возможность его зарождения. Под влиянием условий среды он развивался, изменялся, он жил. Говоря о кристалле, трудно обойтись без таких слов, как «питается», «растет». Кристаллы «болеют», «отдыхают», «пожирают друг друга», растворяются, изменяются, совсем «умирают», то-есть исчезают.

В минералогию, представлявшую собой пока еще царство холодных схем и перечень, может быть, очень нужных, но однообразных измерений форм, объемов и углов различных кристаллов и различных физических констант, можно было вдохнуть жизнь. В частности, для этого нужно было ввести в нее еще одно измерение — время.

10

В 1912 году был открыт способ экспериментального определения распределения атомов в кристалле, основанный на отражении рентгеновских лучей от плоскостей кристаллической решетки. Этот так называемый рентгеноструктурный анализ позволяет расшифровать любую кристаллическую структуру минерала.

11

Шестиугольной.

12

Б. П. Вейнберг показывал прекрасный опыт, который без всяких дополнительных приспособлений позволял наблюдать структуру льда. Он пропускал через кусок льда пучок света от дугового фонаря. В различных точках этого куска, где имелись загрязнения или искажения кристаллической структуры, тепло задерживалось, и лед начинал плавиться; при этом образовывались пустоты. Подобно снежинкам, они также имели строго гексагональную форму, так как разрушение структуры льда шло в направлении как раз противоположном росту ледяных кристаллов. Эти фигуры представляли собой «отрицательные» снежинки, менее тонко выраженные, чем настоящие, но все же в точности сохраняющие их форму