Страница 8 из 9
Прежде всего нам предстоит обсудить, конечно, вопрос о том, насколько реальна самая идея закинуть пушечное ядро на Луну. Мысль о возможности бросить тело с такой скоростью, которая навсегда унесла бы его с Земли, кажется многим совершенно нелепой. Большинство людей привыкло думать, что всякое брошенное тело непременно должно упасть обратно. Таким людям идея Жюля Верна о посылке ядра на Луну представляется абсурдной и беспочвенной. Мыслимо ли, в самом деле, сообщить земному телу такую скорость, чтобы оно безвозвратно покинуло нашу планету? Механика дает на этот вопрос безусловно положительный ответ.Предоставим слово Ньютону. В своих «Математических началах физики», фундаменте современной механики и астрономии, он писал (книга I, отд. I, определение V):
«Если свинцовое ядро, брошенное горизонтально силою пороха из пушки, поставленной на вершине горы, отлетает по кривой – прежде чем упасть на Землю – на две мили, то (предполагая, что сопротивления воздуха нет), если бросить его с двойной скоростью, оно отлетит приблизительно вдвое дальше; если с десятикратною, то в десять раз. Увеличивая скорость, можно по желанию увеличить и дальность полета и уменьшить кривизну линии, по которой ядро движется, так что можно бы заставить его упасть в расстоянии 10°, 30° и 90°, можно заставить его окружить всю Землю и даже уйти в небесные пространства и продолжать удаляться до бесконечности».
Итак, ядро, извергнутое воображаемой ньютоновой пушкой, при известной скорости безостановочно кружилось бы около нашей планеты, наподобие крошечной
Луны (рис. 11). Мы можем вычислить, какая начальная скорость нужна для такого полета ядра. Вычисление это (если пренебречь сопротивлением атмосферы) настолько же просто, насколько любопытен его результат.
Рис. 11. Воображаемый опыт Ньютона с пушечными снарядами
Чтобы найти искомую скорость, отдадим себе отчет в том, почему ядро, выброшенное пушкой горизонтально, падает в конце концов на Землю. Потому, что земное притяжение искривляет путь ядра – снаряд летит не по прямой линии, а по кривой [13] , которая упирается в земную поверхность. Но если бы мы могли уменьшить кривизну пути ядра настолько, чтобы сделать ее одинаковой с кривизной земной поверхности, то ядро никогда на Землю не упало бы: оно вечно мчалось бы по кривой, концентрической с окружностью нашей планеты. Этого можно добиться, сообщив ядру достаточную скорость, и мы сейчас определим – какую. Взгляните на рис. 12.
Рис. 12 Вычисление скорости ядра, которое должно вечно кружиться около Земли
Снаряд, выброшенный пушкой из точки А по касательной, спустя секунду был бы, скажем, в точке В, – если бы не действие земного притяжения. Тяжесть меняет дело, и под ее влиянием снаряд через секунду окажется не в В, а ниже настолько, насколько всякое свободное тело опускается в первую секунду своего падения, т. е. на 5 м. Если, опустившись на эти 5 м, снаряд окажется над уровнем Земли ровно настолько же, насколько и в точке А, то значит, он летит параллельно земной поверхности, не приближаясь и не удаляясь от нее. Это и есть то, чего мы желаем добиться. Остается вычислить лишь длину AB, т. е. путь снаряда в одну секунду; результат и даст искомую секундную скорость ядра. Вычисление может быть выполнено по теореме Пифагора. В прямоугольном треугольнике АВО линия АО есть земной радиус, равный 6 371 000 м. Отрезок ОС = АО, отрезок ВС = 5 м; следовательно, OB = 6 371 005 м. По теореме Пифагора имеем:
6 371 0052 = 6 371 0002 + AB 2.
Отсюда уже легко вычислить искомую величину секундной скорости:
AB = 7900 м/с.
Итак, если бы пушка могла сообщить снаряду начальную скорость в 8 км/сек, то при отсутствии сопротивления атмосферы такой снаряд никогда не упал бы на Землю, а вечно вращался бы вокруг нее [14] . Пролетая в каждую секунду 8 км, он в течение 1 ч 23 мин успел бы описать полный круг и возвратился бы в точку исхода, чтобы начать новый круг, и т. д. Это был бы настоящий спутник земного шара, наша вторая Луна, более близкая и более быстрая, чем первая. Ее «месяц» равнялся бы всего только 1 ч 23 мин. Она мчалась бы в 17 раз быстрее, чем любая точка земного экватора, и если вы вспомните то, что сказано было выше об ослаблении тяжести вследствие вращения Земли (см. стр. 28–30), то вам станет еще яснее, почему ядро наше не падает на Землю. Мы знаем, что если бы земной шар вращался в 17 раз быстрее, то тела на экваторе целиком потеряли бы свой вес; скорость же нашего снаряда – 8 км/с – как раз в 17 раз больше скорости точек земного экватора.
Рис. 13. Как направлена сила тяжести, действующая на снаряд в воображаемом опыте Ньютона
Человеческой гордости должно льстить сознание, что мы имеем возможность – правда, лишь теоретическую – подарить Земле маленького, но все же настоящего спутника. Пылкий герой Жюль-Вернова «Путешествия на Луну», артиллерист Мастон, не без основания воскликнул, что в создании пушечного ядра человек проявил высшую степень могущества: «Создав пушечное ядро, человек сотворил подобие несущихся в пространстве небесных светил, которые в сущности те же ядра». Еще справедливее это сравнение с небесными светилами для того снаряда, который отсылается в мировое пространство. Это новое небесное тело, при своей миниатюрности, будет не хуже всех остальных подчиняться трем законам Кеплера, управляющим небесными движениями. Нужды нет, что пушечный снаряд – предмет «земной»: приобретя космическую скорость, он превращается в настоящее небесное тело.
Рис. 14. Судьба ядер, выброшенных пушкой с весьма большими скоростями
Итак, сообщив пушечному снаряду начальную скорость 8 км/с, мы превращаем его в маленькое небесное тело, которое, победив земное притяжение, уже не возвращается на Землю. Что же будет, если сообщить снаряду еще большую начальную скорость? В небесной механике доказывается, что при начальной секундной скорости в 8, 9, 10 км/с, снаряд, выброшенный пушкой, будет описывать около Земли не окружность, а эллипс – тем более вытянутый, чем значительнее начальная скорость; центр Земли занимает один из фокусов этого эллипса.
Рис. 15. Какие пути должны описывать в пустом пространстве тела, брошенные с Земли горизонтально со скоростью 8 км/с и более
Когда же мы доведем начальную скорость приблизительно до 11 км/с, эллипс превратится уже в незамкнутую кривую – в параболу (рис. 15). Точнее говоря, он должен был бы превратиться в параболу, если бы Земля была единственным телом, притяжение которого влияет на путь нашего снаряда. Могучее притяжение Солнца также действует на снаряд и мешает ему удалиться в бесконечность. Брошенный с указанной скоростью в направлении годового движения Земли снаряд избегнет падения на Солнце и будет вечно обращаться вокруг него, подобно земному шару и другим планетам. В астрономическом смысле он повысится в ранге: из спутника Земли превратится в спутника Солнца, в самостоятельную планету. Человеческая техника подарит солнечной системе нового миниатюрного члена.
Ради простоты мы начали с рассмотрения тела, брошенного горизонтально. В небесной механике доказывается, однако, что те же выводы справедливы и для тела, брошенного под любым углом к горизонту, даже отвесно, как ядро в романе Жюля Верна. Во всех случаях при достаточной скорости снаряд покидает Землю навсегда и уносится в мировое пространство.
Вот какие чудесные возможности открывает перед нами теория. Что же говорит ее несговорчивая сестра – практика? В состоянии ли современная артиллерия осуществить эти возможности?
Величайшая пушка, действительно сооруженная, – это то знаменитое сверхдальнобойное орудие, которым немцы в 1918 г. обстреливали Париж с расстояния 120 км. В следующей табличке сопоставлены данные об обеих пушках – германской [15] и Жюль-Верновой: