Добавить в цитаты Настройки чтения

Страница 20 из 20

Рис. 5.

Отбор конкретной генетической формулы был бы тривиальным занятием, если у нас была бы возможность читать гены всех животных. Но естественный отбор не отбирает непосредственно гены — он отбирает эффекты, которые гены оказывают на тела: это так называемые фенотипические эффекты. Человеческий глаз неплохо подходит для отбора фенотипических эффектов — что мы видим на примере многочисленных пород собак, коров и голубей, а также, если позволите — тех, что показаны на рисунке 5. Чтобы поручить компьютеру самому выбирать фенотипические эффекты, нам придётся написать очень хитроумную программа распознавания образов. Программы распознавания образов существуют. Они используются, чтобы распознавать напечатанный и даже рукописный текст. Но эти трудные, «на грани искусства», программы требуют очень больших и быстрых компьютеров. Но даже если бы такая программа распознавания образов и не превосходила моих способностей программиста и была бы по силам моему маленькому компьютеру с его 64 килобайтами памяти, я бы всё равно не суетился на этот счёт. Эту задачу гораздо лучше решает человеческий глаз — вкупе с, и это более важно, 10-гиганейронным компьютером в голове.

Было бы не слишком трудно поручить компьютеру отбор неопределённых общих особенностей — таких, как высоких и тонких, низких и широких, возможно — изогнутости, остроконечности, даже украшенности в стиле рококо. Можно было бы запрограммировать компьютер так, чтобы он помнил качества, одобренные человеком в прошлом, и поддерживать селекцию того же самого качества в будущем. Но это нисколько не приблизило бы нас к моделированию естественного отбора. Важный момент — природе не нужно вычислительных мощностей для отбора, ну кроме разве что особых случаев, например — павам, выбирающим павлинов. В природе, обычный селектирующий агент непосредственен, непреклонен и прост. Это — мрачная старуха с косой. Конечно, критерии выживания совсем не просты — именно поэтому естественный отбор может создавать животных и растения такой огромной сложности. Но сама смерть очень груба и проста. И неслучайная смерть — это всё, что нужно природе для отбора фенотипов — и следовательно, генов, их поддерживающих. Чтобы смоделировать на компьютере естественный отбор (в интересующем нас смысле), мы должны забыть об украшениях в стиле рококо и всех других визуально выраженных качествах. Вместо этого мы должны будем сосредоточиться на моделирования неслучайной смерти. Биоморфы должны взаимодействовать в компьютере с сымитированной враждебной окружающей средой. И какие-то особенности их формы должны оказать влияние на их выживание в этой окружающей среде. В идеале, враждебная окружающая среда должна включить эволюцию разных биоморфов: «хищников», «добычу», «паразитов» и «конкурентов». Специфическая форма биоморфов-добычи должна определять её уязвимость к поимке, например, специфической формой биоморфа-хищника. Такие критерии уязвимости не должны быть предусмотрены программистом. Они должны появиться тем же самым путём, каким появляются любые формы. Тогда эволюция в компьютере действительно пойдёт сама собой, поскольку уже будут выполнены условия для самоподдержания «гонок вооружений» (см. главу 7), и я бы не осмелился предсказать, чем всё это могло бы закончиться. К сожалению, создание такого искусственного мира было бы выше моих возможностей как программиста.

Достаточно умны для такой работы, видимо, программисты, разрабатывающий трескучие и вульгарные игры — разновидности «Космических захватчиков». В этих программах симулируется искусственный мир. У него есть география, часто трёхмерная, и очень сжатая временная размерность. Объекты сжимаются в моделируемом трёхмерном пространстве, сталкиваясь друг с другом, стреляя друг в друга, глотая друг друга на фоне отвратительного шума. Симуляция может быть настолько хороша, что у игрока, манипулирующего джойстиком, складывается полная иллюзия, что он сам — часть этого искусственного мира. Мне кажется, что встретить такой уровень программирования можно на имитаторах, на которых тренируются пилоты самолётов и космических кораблей. Но даже эти программы — мелюзга в сравнении с программой, которую нужно было бы написать для моделирования появляющейся гонки вооружений между хищниками и добычей, проходящей в полноценно сымитированной экосистеме. Конечно, это выполнимая задача. Если кто-то из профессиональных программистов испытывает желание сотрудничать на эту тему — отзовитесь.

Между тем, есть идеи насчёт кое-чего намного более реализуемого, и я наметил их испробовать с наступлением лета. Я поставлю компьютер в затенённый угол сада; экран может показывать цветные картинки. У меня уже есть версия программы, которая поддерживает ещё несколько «генов», управляющих цветом — так же, как остальные 9 генов управляют формой. Я начну с более-менее компактных и ярко раскрашенных биоморфов. Компьютер одновременно покажет всех мутантных потомков биоморфа, отличающихся от данного по форме и/или цвету. Я надеюсь, что пчёлы, бабочки и другие насекомые будут садиться на экран и «выбирать» своим телом конкретное пятно на экране. Когда будет зарегистрировано заданное количество «выборов», компьютер очистит экран, «размножит» потомков от избранного биоморфа и покажет следующее поколение мутантных потомков.

Я питаю большие надежды на то, что через много поколений настоящие насекомые вызовут в компьютере эволюцию цветов. Если так и будет, то компьютерные цветы проэволюционируют под теми же самыми давлениями отбора, что и реальные цветы в реальной эволюции. Мои надежды поддержаны и тем фактом, что насекомые часто садятся на яркие цветные точки на женских платьях, а также более систематическими экспериментами, которые были опубликованы. Но есть также надежда, которую я бы счёл даже более захватывающей, что живые насекомые могли бы вызывать эволюцию насекомоподобных форм. Прецедент есть — и следовательно, основания для надежды: в прошлом пчёлы вызвали эволюцию орфисов — пчёлоподобных орхидей. Трутни в течение многих поколений нарастающей эволюции орхидей, создали пчелоподобную форму цветка — они пытались совокупиться с цветами, и следовательно, переносили пыльцу. Представьте себе «пчелоподобную орхидею» из рисунка 5 в цвете.[9] Разве вы не захотели бы вывести новый сорт цветов, если б вы были пчелой?

Пчелоподобная орхидея Орфис (добавлено переводчиком)



Главный повод для моего пессимизма на этот счёт — большие и принципиальные отличия нашего зрения и зрения насекомых. Экраны компьютеров разработаны для человеческих глаз, а не для глаз пчелы. Очень может быть так, что хотя и мы, и пчёлы (при всём несходстве наших глаз), находим орфисов очень похожими на пчелу, но пчёлы, возможно, вообще не смогут видеть образы на экране. Возможно, что пчёлы увидят только 625 линий строчной развёртки! Однако, попытаться стоит. К тому времени, когда эта книга будет опубликована, я уже буду знать ответ.

Есть такое расхожее мнение, обычно формулируемое в стиле Стивена Поттера (который можно было бы назвать «плонкингом»), гласящее, что из компьютера нельзя извлечь больше, чем в него введено. Другие варианты: «компьютеры делают лишь в точности то, что вы велите им, но никогда не творят новое». Это мнение справедливо лишь в тупо тривиальном смысле — в смысле предположения, что Шекспир никогда не написал бы ничего, кроме отдельных слов, которые его учил писать его первый школьный учитель. Я запрограммировал ЭВОЛЮЦИЮ в компьютере, но я не планировал ни «моих» насекомых, ни скорпиона, ни спитфайра, ни лунного посадочного модуля. У меня не было даже отдалённых подозрений, что появятся именно они, и поэтому слово «появляться» здесь уместно. Да, производил отбор именно я, и я направлял эволюцию, но на каждой стадии я был ограничен маленьким выводком потомков, предлагаемым случайной мутацией, а моя «стратегия» селекции была капризна и краткосрочна. Я не стремился к какой-то отдалённой цели — как и естественный отбор.

9

Мы решили для наглядности добавить фото настоящего орфиса — А.П.

Конец ознакомительного фрагмента. Полная версия книги есть на сайте