Добавить в цитаты Настройки чтения

Страница 7 из 13

В текстах Галилея нет прямого ответа на эти вопросы. Ответ можно предложить, опираясь на его слова о «совсем разных способах мышления» его и Кеплера.

Галилей не просто знал и ценил математику, он верил, что наука

написана в великой книге Вселенной — книге, постоянно открытой нашему взору, но понять ее может лишь тот, кто научится понимать ее язык. Написана эта книга на языке математики, и буквы ее — треугольники, круги и другие геометрические фигуры, без помощи которых человек не понял бы в ней ни слова, блуждая в потемках по лабиринту.

Однако в математике Галилей видел лишь инструмент познания. Стремился же он понять содержание книги Вселенной, и прежде всего узнать, на каком фундаменте Мироздание стоит. Для этого от математики требуется не элегантность или изощренность, а помощь в изобретении физических понятий и в проведении придуманных экспериментов.

Эйнштейн: «Галилей — отец современной физики и, по сути, всего современного естествознания». «Все надо делать как можно проще, но не проще, чем надо». «Господь изощрен, но не злонамерен».

Разумеется, Галилей знал, что некоторые планетные орбиты — не круговые. Но знал он и то, что другие — почти круговые. Значит, для исследования физического фундамента астрономии круговая орбита — разумное упрощение. Подобным образом, в поисках закона свободного падения, Галилей упростил ситуацию, устранив сопротивление воздуха. Об этом же заповедь Эйнштейна: «Все надо делать как можно проще, но не проще, чем надо». Так мыслят физики.

Да, этим способом и своей моделью планетного движения Галилею не удалось создать теорию приливов — явление оказалось дальше от фундамента, чем он полагал. Но эта творческая неудача окупилась «побочными продуктами» исследования — принципом относительности и ключевым понятием ускорения.

Рождение экспериментальной астрофизики

Послав Галилею в 1609 году свою «Новую астрономию», Кеплер не успел обидеться на молчание итальянского коллеги. Весной 1610 года он узнал сногсшибательную новость:

Пришла в Германию весть, что ты, мой Галилей, вместо чтения чужой книги занялся собственной и невероятнейшего содержания — о четырех до сих пор неизвестных планетах, найденных при помощи двух очковых линз, что книга эта уже в печати и придет со следующими гонцами. Новость так изумила меня, что я еле успокоился. Ведь в моей книге «Космографическая тайна», изданной тринадцать лет тому назад, пять правильных многогранников допускают не более шести планет вокруг Солнца. Но если вокруг Земли вращается Луна, не входящая в эти шесть, то почему не может быть лун вокруг Юпитера? И если четыре планеты скрывались до сих пор, то, значит, можно ожидать открытий множества новых?

Слева — траектории планеты, с точки зрения земной (с петлями попятного движения) и солнечной (первый закон Кеплера). Справа — физическая модель Галилея

Весной 1610 года еще не было термина «спутник», да в нем и надобности не было, пока Луна была единственной в своем роде. В книжке «Звездный вестник», изданной в марте, Галилей открытые им «планеты» назвал просто звездами, какими они и увиделись его глазу, вооруженному двумя очковыми линзами, поставленными необычным образом.





Получив эту книжку, Кеплер узнал, что Галилей за считанные недели, помимо четырех спутников Юпитера, обнаружил еще несколько изумляющих фактов. На самом близком астрономическом объекте — Луне — он обнаружил горы и впадины, а самых дальних — «неподвижных» — звезд оказалось много больше, чем считалось. Некоторые астрономические объекты, наоборот, исчезли, точнее — преобразились: туманности, включая самую большую — Млечный Путь, предстали огромными совокупностями звезд.

Все эти открытия стали первыми результатами экспериментальной астрофизики — астрономическими фактами, добытыми с помощью физического прибора — подзорной трубы.

Для Галилея то был подарок судьбы, или счастливая случайность, или дар Небес — в зависимости от того, как глядеть на мир. Если смотреть глазами историка, то дар вполне заслуженный — за усердный труд исследователя.

Саму подзорную трубу изобрели далеко от Италии — в Голландии. И изобрели вовсе не физики, а очковых дел мастера. По неизвестной причине или от нечего делать посмотрев через две линзы, поставленные не так, как полагается, а одна за другой — выпуклая за вогнутой, они увидели, что далекие объекты заметно приблизились. Изобретение сразу нашло себе важные применения. Например, заранее обнаружить приближение неприятеля, чтобы подготовиться к встрече. Или просто утолить любопытство, подсматривая издали, кто что делает.

Любопытство Галилея было направлено не столько по сторонам — на дела земные, сколько вверх. Поэтому, узнав о новейшем изобретении в самых общих чертах, Галилей сам сделал несколько труб, довел увеличение до тридцатикратного и направил прибор в небо, на объекты далекие, но близкие его мыслям. Так возник телескоп.

Первым делом он обнаружил и зарисовал гористые ландшафты Луны. Затем ему повезло обнаружить рядом с Юпитером совершенно неизвестные маленькие звездочки, а следующей ночью заметить, что положение этих звездочек изменилось. Для такого везения, конечно, требовалось знать звездное небо как свои пять пальцев, а также незаурядная пристальность. Продолжив наблюдения, Галилей обнаружил, что новые звездочки все время оставались вблизи «блуждающей звезды» Юпитера и что их положения относительно Юпитера повторялись через равные промежутки времени. Это напоминало движение Луны вокруг Земли. Галилей понял, что открыл четыре «луны» Юпитера, и завершил свое открытие, измерив периоды их обращения.

Так появился новый и наглядный довод в поддержку основной идеи Коперника: вокруг большого небесного тела — Юпитера — вращаются малые, как планеты вокруг Солнца и как Луна вокруг Земли. У Галилея и Кеплера и без того хватало уверенности в правоте Коперника, но для других астрономов и тем более для не-астрономов такая наглядность могла уже перевесить книжный авторитет Птолемея. Если, конечно, смотреть открытыми глазами. А это было не так легко, как видно из письма Галилея полгода спустя после публикации «Звездного вестника»:

Посмеемся, мой Кеплер, над великой глупостью людской. Здешние ученые мужи, несмотря на мои тысячекратные приглашения, так и не взглянули ни на планеты, ни на Луну, ни на телескоп. Для них физика — это некая книга, где и надо искать истину — не в природе, а сравнивая тексты. Как бы Вы смеялись, слушая первого здешнего философа, который старался изо всех сил логическими доводами, как магическими заклинаниями, убрать с неба новые планеты!..

Вот какие доводы, например, приводил тогда некий философический астроном:

В голове животного устроено семь окон, через которые воздух допускается к телесному микрокосму, чтобы его просвещать, согревать и питать: две ноздри, два глаза, два уха и рот. Так же и в небесном макрокосме имеются две благоприятные звезды, две неблагоприятные, два светила, и Меркурий — неопределенный и безразличный. Отсюда и из многих других подобных устроений природы, таких как семь металлов и т. д., что утомительно перечислять, мы понимаем, что планет необходимо именно семь. Более того, эти спутники Юпитера невидимы невооруженному глазу и, следовательно, не могут оказывать влияние на земле, потому бесполезны, а значит, и не существуют. Кроме того, евреи и другие древние народы, как и современные европейцы, разделяют неделю на семь дней, названных в соответствии с именами семи планет. Так что, если мы увеличим число планет, вся эта целостная и прекрасная система рухнет.