Добавить в цитаты Настройки чтения

Страница 5 из 7

Рис. 4. Кривая блеска SN 1572 по визуальным наблюдениям астрономов XVI века. Все измерения после пика яркости выполнены Тихо Браге. Детальное изучение подобных звезд и их кривых блеска позволило в XX веке открыть ускоренное расширение Вселенной.

Появление на небосводе «новой» звезды (в максимуме блеска она была сравнима с Венерой и была видна даже днем) вызвало огромный интерес, как среди астрономов, так и среди населения. Многие исследователи (в их числе учитель Кеплера Михаил Местлин и Джон Ди) пытались определить ее точные координаты и параллакс[5]. Занимался подобными наблюдениями и Томас Диггес. В 1573 году он опубликовал книгу, в которой суммировал результаты своих наблюдений. Используя очень простые инструменты вроде «посоха Якова» (две перекрещенные рейки, одна из которых скользит по другой — рис. 5), он измерил угловые расстояния новой звезды от 6 звезд созвездия Кассиопея. В 1977 году английские астрономы Стефенсон и Кларк сравнили результаты определения координат SN 1572 Диггесом и Тихо Браге с положением центроида остатка вспышки сверхновой. Оказалось, что координаты, полученные обоими исследователями (они, кстати, были ровесниками), совпадают с положением радиоисточника и оптической туманности на месте взрыва сверхновой. Неожиданным же оказалось то, что, несмотря на больший разброс индивидуальных измерений Диггеса, среднее положение сверхновой по его данным оказалось существенно более точным, чем у Тихо Браге. Исследователи заключили, что, скорее всего, в измерения или в обработку данных Тихо вкралась небольшая систематическая ошибка, которой не было у Диггеса.

Рис. 5. Посох Якова (иллюстрация из «Практической навигации» Джона Селлера, 1672 год). На протяжении многих столетий «посох» оставался одним из основных инструментов астрономов.

Помимо координат SN 1572, Томас Диггес попытался оценить и ее суточный параллакс и получил, что он не превышает двух угловых минут. Из этого следовало, что звезда находится значительно дальше Луны, параллакс которой равен примерно 1°. Сходные результаты были получены и другими астрономами (в первую очередь — Тихо Браге) и они означали, что, вопреки учению Аристотеля, в мире звезд также могут происходить большие изменения.

Результаты наблюдений сверхновой позволяют отнести Томаса Диггеса к одним из самых выдающихся наблюдателей своего времени. Однако самый значительный вклад в астрономию Диггес внес в качестве популяризатора системы Коперника.

В 1576 году он переиздал популярный альманах своего отца «Prognostication Everlastinge», оставив основной текст без изменений, но добавив несколько приложений. Самое важное из приложений — это работа «А Perfit Description of the Caelestiall Orbes, according to the most aunciente doctrine of the Pythagoreans, lately revived by Copernicus and Geometrical Demonstrations approved» (примерный перевод названия — «Совершенное описание небесных сфер в соответствии с древней доктриной пифагорейцев, возрожденной Коперником, подкрепленное геометрическими демонстрациями»). В этой небольшой работе Диггес дает краткое изложение книги Коперника и приводит собственную диаграмму гелиоцентрической системы (рис. 6). Кардинальное отличие этой схемы от рассмотренной ранее Коперником — отсутствие сферы неподвижных звезд. Согласно Диггесу, звезды, природу которых он, впрочем, не конкретизирует, находятся от Солнца на разных расстояниях, заполняя бесконечное пространство. Любопытно, что Диггес не пишет, что это его собственная диаграмма, и поэтому многие читатели должны были решить, что идея бесконечной Вселенной также принадлежит Копернику.

Рис. 6. Строение Вселенной по Томасу Диггесу (1576 год).

Примерный перевод надписи на диаграмме:





«Эта сфера звезд простирается бесконечно во всех направлениях. Нерушимый дворец счастья украшен бесчисленными, вечными и великолепными огнями, превосходящими наше Солнце по количеству и качеству и (он является вместилищем) беспечальных небесных ангелов, наполненных прекрасной бесконечной радостью, это дом элиты»

Работа Томаса Диггеса, написанная на английском языке, способствовала широкому распространению идей Коперника в Англии. Предполагается, что и Джордано Бруно, живший в Англии с 1583 по 1585 годы, скорее всего, был знаком с книгой Диггеса. Именно ему — Джордано Бруно — принадлежит следующий шаг по пути к современной картине мира — признание звезд объектами, подобными нашему Солнцу.

Диггес считал, что количество звезд бесконечно, но мы наблюдаем лишь ограниченное их число, поскольку большинство звезд находятся слишком далеко и потому они слишком слабы для наблюдений: «the greatest part rest by reason of their wonderfull distance invisible unto us». Известный британский космолог Эдвард Харрисон считает, что тем самым Томас Диггес оказался первым исследователем, осознавшим, что темнота ночного неба нуждается в объяснении. Предложенное самим Диггесом решение было, конечно, неверным, хотя оно и казалось в его время очевидным.

Помимо астрономии Томас Диггес занимался военными и прикладными вопросами, заседал в парламенте, строил гавань и замок в Дувре, принимал активное участие в войне Англии с Нидерландами. Оставили след в истории и два сына Дигггеса. Один из них — сэр Дадли Диггес (1583–1639) — стал известным политиком и государственным деятелем (в Канаде есть мыс и острова Диггеса, названные в его честь Генри Гудзоном, другом Дадли). Другой сын — Леонард Диггес (1588–1635) — был поэтом и переводчиком, возможно знавшим Шекспира (известны два стихотворения Леонарда в память о Шекспире).

Заканчивая рассказ о начале истории фотометрического парадокса, хочется упомянуть, что имя Шекспира связано не только с сыном Томаса Диггеса, но и с ним самим. Первая связь вполне очевидна — после смерти Томаса его вдова Энн снова вышла замуж, причем ее вторым мужем в 1603 году стал Томас Рассел, близкий друг Шекспира, назначенный им исполнителем своего завещания (душеприказчиком). Другая связь менее формальна, довольно неожиданна, и она потребует от читателя определенного чувства юмора.

В 1996 году американский астрофизик Питер Ашер выдвинул гипотезу, что Томас Диггес является прототипом принца Гамлета в пьесе Шекспира. Согласно Ашеру, пьеса «Гамлет» в аллегорической форме описывает столкновение четырех различных космологических моделей, известных на рубеже XVI и XVII веков, — геоцентрической системы Птолемея, гелиоцентрической системы Коперника, гелиоцентрической системы, модифицированной Диггесом (бесконечная Вселенная без сферы неподвижных звезд) и, наконец, компромиссной модели Тихо Браге (эта модель соединяла в себе черты гео— и гелиоцентрических систем).

Персонажи «Гамлета» по Ашеру расшифровываются так: Клавдий, король Датский, конечно же, Клавдий Птолемей, и он воплощает царствующую, но уже отжившую геоцентрическую систему; система Тихо Браге воплощена через Гильденстерна и Розенкранца (это имена предков Тихо, изображенные на его портрете, посланном для распространения в Англию), казнь которых в Англии символизирует гибель этой гибридной системы; сам Гамлет — это, конечно, Томас Диггес. Персонажа, олицетворяющего Коперника, в пьесе нет, но его косвенное присутствие можно обнаружить в желании Гамлета возвратиться в Виттенберг на учебу, причем Клавдий препятствует этому. Ашер объясняет, что университет в Виттенберге (Германия) был одним из первых оплотов коперниканства (там работал Ретик — единственный ученик Николая Коперника, оказавший значительное содействие в публикации его главного труда). Причина, по которой Шекспир зашифровал основную тему пьесы — казнь Джордано Бруно в 1600 году («Гамлет», как предполагается, был написан в 1600–1601 годах).

5

Параллакс — изменение направления на светило при наблюдениях из разных точек (видимое изменение положения небесного светила вследствие перемещения наблюдателя). Суточный параллакс — разница в направлениях на светило из центра Земли и из точки на поверхности Земли. Другими словами, это угол, под которым со светила виден радиус Земли.