Страница 46 из 53
Чем же реликтовое излучение может помочь в решении вопроса, насколько однородна Вселенная? Дело в том, что это излучение несет информацию о свойствах Вселенной в точках, разнесенных очень далеко в пространстве. И эти свойства оказываются до удивления одинаковыми. Так, измерения на искусственном спутнике «Реликт», выполненные в Институте космических исследований АН СССР, показали, что интенсивность реликтового излучения, приходящего к нам из диаметрально противоположных точек на небе, одинакова с точностью по крайней мере до сотых долей процента. Поскольку каждый такой луч идет к нам практически от горизонта, то значит, точки, из которых вышло реликтовое излучение, разнесены сегодня на 30 млрд. световых лет. А излучение свидетельствует, что свойства этих областей совершенно одинаковы.
Но, что, собственно, удивительного в том, что в очень больших масштабах Вселенная однородна? Удивительно это по следующей причине. Световой сигнал, вышедший из одной из точек даже 15 млрд. лет назад, не успеет пройти расстояние 30 млрд. световых лет. Быстрее света ничто не может двигаться. Значит, никакой сигнал не успеет пройти от одной точки до другой, отстоящей от первой на 30 млрд. световых лет. Нет никаких причин для выравнивания или «согласования» условий в этих точках, раз они не успели с начала расширения Вселенной даже обменяться сигналами. И тем не менее условия в них одинаковы. Почему?
Это и есть первая загадка, которую должна решить теория. Она получила название «проблемы горизонта».
Перейдем теперь ко второму фундаментальному свойству Вселенной, которое также нуждается в объяснении. Мы уже говорили, что расширение Вселенной тормозится силами тяготения. Эти силы, определяющие энергию тяготения, зависят от средней плотности вещества во Вселенной. В то же время скорости удаления галактик друг от друга определяют кинетическую энергию расширения. Если бы в самом начале энергия тяготения заметно превышала начальную кинетическую энергию разлета, то расширение давно прекратилось бы и Вселенная сжалась.
С другой стороны, если бы кинетическая энергия в начале была заметно больше, то галактики сегодня разлетались бы по инерции совсем не тормозясь тяготением. То значение плотности вещества, при котором обе энергии уравновешиваются, называется критическим. Наблюдения показывают, что в первые мгновения расширения плотность была чрезвычайно близка к критическому значению. Рассмотрим для примера момент времени в прошлом, очень близкий к началу расширения, когда, согласно современной теории единое физическое взаимодействие, определяющее все процессы в веществе, распалось и сильное ядерное взаимодействие стало играть самостоятельную роль. Этот момент называют эпохой «Великого объединения», он отстоит от начала расширения всего на 10-33 с. Согласно данным наблюдений о скорости расширения и средней плотности вещества сегодня, и по расчетам по модели Фридмана, в эпоху «Великого объединения» отличие плотности от критической составляло менее 10-50 доли от значения самой плотности!
Таким образом, в самом начале расширения плотность вещества во Вселенной была удивительно близка к критической. Но почему? Почему силу взрыва, которая определила скорость расширения, природа подобрала такой, что критическая плотность с величайшей точностью совпала с реальной плотностью вещества?
Это и составляет вторую загадку Вселенной, называемую иногда «проблемой критической плотности».
Следующая проблема: почему, несмотря на удивительную однородность Вселенной в очень больших масштабах, в меньших масштабах все же были отклонения от однородности — небольшие первичные флуктуации? Именно эти небольшие сгущения потом под действием сил тяготения уплотнялись и образовали, уже в эпоху, близкую к нашей, галактики и их скопления.
Наконец, существует еще одна проблема. Она связана с предсказываемыми современной теорией особыми частицами, такими, например, как магнитные монополи. Эти своеобразные частицы возникли во Вселенной в эпоху «Великого объединения». Их должно было возникнуть тогда необычайно много. Правда, в ходе последующей эволюции часть монополей и их античастиц — антимонополей проаннигилируют друг с другом. Но, как показали расчеты Я.Б. Зельдовича и М.К. Хлопова, в сегодняшней Вселенной монополей должно остаться очень много — примерно столько же, сколько обычных частиц — протонов. Но ведь монополи в 1016 раз массивнее протонов. Это значит, что плотность вещества в виде монополей в сегодняшней Вселенной была бы в 1016 (!) раз больше, чем плотность обычного видимого вещества. Такого, конечно, не может быть. Следовательно, в сегодняшней Вселенной монополей практически нет. Куда же они делись?
Эта загадка получила название «проблемы монополей».
Перечисленные загадки связаны с теми процессами, которые происходили в самом начале расширения Вселенной, т. е. в них в зашифрованном виде хранится тайна начала. Оставалось подобрать ключ к шифру.
Мы изложим гипотезы, которые по современным представлениям описывают начало Большого взрыва. Ключ к пониманию «первотолчка» лежит в возникновении особого, так называемого вакуумноподобного состояния вещества, которое может возникать при очень большой плотности. В современной физике под большой плотностью понимается плотность, близкая к величине, определяемой тремя фундаментальными постоянными: G — постоянной тяготения, h — постоянной Планка и c — скоростью света:
Огромность этой величины трудно вообразить. Плотность получила название планковской. Согласно теории, при плотностях близких к планковской, в веществе могут возникать особые состояния, характеризуемые сильнейшими натяжениями, или, что то же самое, отрицательными давлениями. Соотношение между плотностью ρ* и давлением Р* такого состояния имеет вид: Р* = —ρ*с2. Именно такие состояния получили название вакуумноподобных.
Происхождение названия связано со следующим. Если в сегодняшней Вселенной из какой-то области пространства удалить все реальные частицы и поля, то эта область все же не может считаться «абсолютной пустотой (вакуумом)». Дело в том, что в пустоте все время происходит рождение и уничтожение так называемых виртуальных пар — частиц и античастиц, происходят своеобразные «квантовые флуктуации вакуума»: Следствия этих процессов измеряются в тонких экспериментах.
Квантовые флуктуации вакуума не могут быть устранены. Возможным следствием этих процессов является наличие очень небольшой плотности вакуума ρв и отрицательного давления (физически это означает натяжение) Pв. При этом должно выполняться соотношение pв = —ρв∙с2. Любое состояние вещества, в котором давление и плотность связаны таким соотношением, получило название вакуумноподобного. Особенностью вакуумноподобного состояния является то, что оно не меняется при расширении — плотность и давление его остаются постоянными.
Следующее важное обстоятельство связано с уточнением Эйнштейном закона всемирного тяготения Ньютона. Согласно Эйнштейну, в создании гравитационных ускорений участвует не только плотность массы ρ, но и давление Р (или натяжение). Вместо ρв формулу для вычисления тяготения входит сумма (ρ + 3P/c2).
В обычных астрофизических условиях, например в звездах, второе слагаемое чрезвычайно мало. Но в случае вакуумноподобного состояния оно становится решающим. Подставляя в скобки P* = —ρ* с2 для этого случая, убеждаемся, что сумма в скобках становится отрицательной и гравитационное притяжение сменяется отталкиванием. Вот это отталкивание, имеющее не гидродинамический (как в случае перепада давлений), а чисто гравитационный характер, вероятно, и послужило тем «первотолчком», который привел к расширению Вселенной.
Любые две частицы в такой очень ранней Вселенной двигались с нарастающей скоростью друг от друга. При этом плотность вакуумноподобного состояния ρ*, как уже говорилось, с расширением не уменьшалась, не уменьшалось и натяжение (отрицательное давление) Р* и ускоряющая сила действовала постоянно[4]. Легко показать, что при этом расстояния между частицами увеличиваются по экспоненциальному закону, т. е. чрезвычайно стремительно: R = R0 ∙ ехр(3∙1043∙t(с)). Этот процесс получил название инфляции (на английском — раздувание). Он, вероятно, продолжался с t ≈ 3∙10-44 с, когда плотность массы и частиц и вакуумноподобного состояния была около планковского значения ρп ≈ 1094 г/см3, до t ≈ 3∙10-35 с. К концу этого периода все частицы разлетелись на невообразимо большие расстояния — порядка 104∙100000000 парсеков друг от друга. Для сравнения напомним, что размер всей видимой сегодня Вселенной «всего» примерно 1010 парсеков! В той ранней Вселенной практически не было частиц, настолько они были редки, и температура практически не отличалась от -абсолютного нуля. Единственное, что осталось во Вселенной к концу раздувания, — это вакуумноподобное состояние. Но такое состояние неустойчиво и при t примерно равном 3∙10-35 с оно распалось на обычные частицы, движущиеся с ультрарелятивистскими скоростями. Температура во Вселенной в ходе распада вакуумноподобного состояния подскочила примерно до T ≈ 1027 К. Вселенная стала горячей! Это был конец инфляции — вакуумноподобное состояние исчезло. Дальнейшее расширение Вселенной протекало с замедлением, вследствие взаимного тяготения частиц обычного вещества. Последующая судьба расширяющегося горячего вещества описана в предыдущем разделе.
4
Эта ускоряющая сила на другом языке описывается введением уже упоминавшегося Л-члена в уравнения Эйнштейна. Данное обстоятельство подчеркивалось Я. Б. Зельдовичем.