Страница 18 из 53
Можно было бы ожидать, что теперь хозяин возросшего материала сам подробно изучит движение Солнца. Но этого не произошло. Слайфер по-прежнему говорил о подобных исследованиях как деле будущего и лишь предварительно указал, что движение Солнца со скоростью в 700 км/с направлено к созвездию Козерога.
Звезды, окружающие Солнце, такого движения не показывали. В этом различии Слайфер видел подтверждение идеи о том, что туманности представляют собой отдельные острова Вселенной. О работах Трумена, Юнга и Харпера он почему-то совсем не вспомнил.
Заканчивая свой доклад, Слайфер твердо заявил, что изученные им туманности — это явно не те объекты, из которых могли формироваться солнечные системы, подобные нашей.
На полях Европы, Ближнего Востока и Закавказья бушевала первая мировая война. Обычно тесные связи между странами порвались и ученые Старого и Нового Света плохо знали, что делается в науке по обе стороны Атлантики. А между тем в Германии и в Нидерландах как раз в это время удалось получить важнейшие результаты, имеющие прямое отношение к удивительным лучевым скоростям туманностей, измеренных Слайфером. Альберт Эйнштейн в Берлине сформулировал свое космологическое уравнение и в предположении стационарности Вселенной нашел его решение. В этом решении гипотетические силы гравитационного отталкивания вакуума, введенные им, уравновешивались тяготением вещества, заполняющего Вселенную. Год спустя, в остававшихся нейтральными Нидерландах профессор Лейденского университета Биллем де Ситтер рассмотрел астрономические следствия теории относительности. Он нашел, что решение Эйнштейна не единственное. Если предположить, что во Вселенной средняя плотность вещества очень мала, то эйнштейновские силы отталкивания будут преобладать над тяготением вещества и вызовут его расширение, разлёт. Космические силы отталкивания пропорциональны расстоянию, поэтому и скорости взаимного удаления частиц вещества (под частицами можно понимать и отдельные галактики) будут пропорциональны расстоянию.
В 1916 и 1917 гг. три статьи об эйнштейновской теории гравитации и ее астрономических приложениях, написанные де Ситтером по предложению Эддингтона, были переправлены в Англию и опубликованы в ежемесячном журнале Королевского астрономического общества. Из-за войны список лучевых скоростей туманностей Слайфера до де Ситтера не дошел и он знал только об измерении скоростей туманности Андромеды и еще двух туманностей. Ему оставалось лишь отметить, что в отличие от туманности Андромеды у других объектов скорости положительны. Но де Ситтер полагал, что «спиральные туманности вероятнее всего находятся среди самых далеких объектов, которые мы знали». Он с уверенностью предсказывал, что «у очень удаленных объектов мы должны ожидать высокие или особенно высокие лучевые скорости».
Началась европейская часть истории изучения движений туманностей.
В конце 1917 г. сотрудник Страсбургской обсерватории Карл Вильгельм Вирц, ничего не зная о работе Паддока, также ввел в кинематические уравнения К-член... Вообще работа Паддока прошла на удивление незаметно. Даже Хаббл, подробно описывая в книге «Мир туманностей» труды своих предшественников, Паддока не вспомнил и считал, что введение K-члена — это заслуга Вирца.
Вирц заключил, «что система спиральных туманностей по отношению к нынешнему положению Солнечной системы, как центра, движется прочь со скоростью примерно 656 км/с».
Через четыре года, располагая уже 29 лучевыми скоростями, вдвое больше прежнего, Вирц повторил свое исследование, в сущности получив тот же результат. Кажется, в этой работе он впервые кратко назвал K-член — красным смещением.
А в промежутке между двумя работами Вирца такой же расчет с K-членом сделал и Лундмарк. Тогда еще природу туманностей в сущности не знали и вместе со спиралями и Магеллановыми Облаками Лундмарк использовал также и планетарные туманности. Но спиралей было большинство и из всех вариантов его решений также неизменно следовал общий вывод: K-член очень велик и имеет положительный знак.
Пока Паддок, Вирц и Лундмарк определяли K-член, Слайфер в одиночестве продолжал измерять все новые лучевые скорости. Число туманностей с известными лучевыми скоростями неуклонно росло и в 1925 г. их насчитывалось уже 45. Но анализом полученных данных Слайфер по-прежнему не занимался.
Вероятно, войной и нарушением связей следует объяснить, почему ни Вирц, ни Лундмарк о теории де Ситтера в своих статьях тогда не упоминали.
В годы войны де Ситтер не только разработал приложение эйнштейновской теории к астрономии, но сделал и другое важнейшее дело, в конечном итоге подтолкнувшее изучение красного смещения.
В Нидерландах он мог получать литературу из Германии и делиться научными новостями со своими английскими коллегами, став посредником между учеными двух воюющих держав. Именно он в 1916 г. посылает Эддингтону статью Эйнштейна, знакомит его с общей теорией относительности и привлекает внимание к одyому из следствий теории, которое можно было бы проверить. Глава английской астрономии сразу же понял значение работы Эйнштейна и вместе с Дайсоном, тогдашним королевским астрономом, энергично берется за подготовку, несмотря на продолжающуюся войну, экспедиции для наблюдения полного солнечного затмения 29 мая 1919 г. Фотографируя звезды вокруг полностью затмившегося Диска Солнца, можно убедиться, отклоняется ли луч света, проходя около гравитирующего тела, как это предсказывала теория Эйнштейна.
При наблюдении затмений многое зависит от случайностей. Месяцы подготовки, затраты средств и времени, порой длительные путешествия, а результатов может не быть просто из-за плохой погоды, случайно набежавшего облачка. Так происходило и на этот раз. В день затмения на острове Принсипи у побережья Африки, куда прибыла одна из двух английских экспедиций, разразился сильнейший дождь. Погода стала чуть улучшаться, когда затмение уже началось и Солнце частично было закрыто Луной. Снимать затмение пришлось сквозь облака. И все же на нескольких снимках Эддингтон обнаружил следы звезд. Тщательные измерения показали, что звезды действительно смещены, причем так, как это требовали выводы Эйнштейна. Теория Эйнштейна триумфально подтвердилась. «Вся Англия только и говорит, что о Вашей теории,— писал Эддингтон в декабре 1919 г. Эйнштейну,— она произвела потрясающую сенсацию».
Весть о подтверждении теории относительности разнеслась по всему миру. Теперь нужно было искать и другие следствия теории, и работы де Ситтера указывали исследователям-эмпирикам нужное направление поиска. Необходимо было проверить, есть ли действительно связь лучевых скоростей с расстоянием далеких объектов.
Первым на эту задачу откликнулся Вирц. Весной 1924 г. он публикует статью «Де Ситтеровская космология и радиальные движения спиральных туманностей». Но откуда взять расстояния туманностей? Ведь в то время даже для ближайших туманностей — Андромеды и Треугольника — Хаббл еще не получил своих результатов. И Вирц решается взять за меру расстояний видимые диаметры туманностей, полагая, что истинные их размеры в среднем одинаковы. В этом предположении, чем дальше туманность, тем меньше будет ее видимый диаметр. Искомая связь между видимым размером и скоростью, а вернее намек на нее, обнаружилась: чем меньшие туманности он брал, тем больше оказывалась у них лучевая скорость. Но зависимость, полученная Вирцем, была не совсем той, что предсказывалась теорией. Там линейная зависимость должна наблюдаться между скоростью и расстояниями, а Вирц, вероятно, чтобы как-то смягчить слабую обоснованность своей гипотезы, вместо размеров туманностей решил брать их логарифмы. И еще одно мешало доверять полученному результату. Обнаружилось, что со скоростью коррелирует также и поверхностная яркость туманностей. У концентрированных туманностей скорость была больше. Тогда еще не догадывались, что это столь частый в астрономии эффект селекции. Просто среди в целом слабых объектов для наблюдений выбирались те, у которых поверхностная яркость выше, особенно в центре. Тогда их спектры можно было сфотографировать за обозримые экспозиции.