Добавить в цитаты Настройки чтения

Страница 3 из 15



Эти отрасли развиваются параллельно с ядерной энергетикой и забирают у нее значительную долю капитальных вложений. И чем дальше входим мы в атомный век, тем больше будет отходов.

Но главный вклад вносят, конечно, атомные электростанции. Особое место здесь занимают отработавшие рабочие каналы, которые содержат высокоактивные осколки деления, а также недовыгоревший уран и накопившийся плутоний. Они представляют собой наиболее активный тип отходов и наиболее специфичный. А потому требуют к себе особого отношения.

При современной ситуации на атомном рынке (уран сейчас стоит относительно дешево) извлекать полезные компоненты из отработавших рабочих каналов не имеет смысла. Это и очень сложно технически, и дорого, и опасно. А потому сегодня тепловыделяющие элементы подвергают захоронению, чаще всего прямо на территории АЭС. Хранят их в водной среде на достаточно большом удалении друг от друга. Таким образом, достигаются две цели. Во-первых, отводится тепло, выделяющееся при продолжающемся радиоактивном распаде остатков «горючего». Во-вторых, исключается возникновение критического ансамбля, способного привести к взрыву.

Рис. 2. Один из способов захоронения радиоактивных отходов

1 — здание вентиляционной службы; 2, 3 — помещения для подъемных механизмов; 4 — склад; 5 — здание для приемки отходов; 6 — шахтный ствол для отходов; 7 — соль; 8 — место хранения отходов; 9 — вентиляционный туннель; 10 — дно шахты; 11 — шахтный ствол для персонала.

Подобные хранилища представляют собой огромные сооружения. И число их растет. Наступает момент, когда накопившиеся отходы надо куда-то девать.

Наиболее распространенной является технология прессования. Рабочий канал освобождают от всех конструктивных элементов, не имеющих столь высокой активности, как ядерное горючее: от кожухов, крышек, колпаков, дистанционирующих решеток и прочего. Остаются только тепловыделяющие элементы. Чтобы они занимали меньше места, их можно, например, скрутить в жгут. Затем такой жгут помещается в контейнер, заливается свинцом, закрывается сверху крышкой и заваривается. Получается некая герметичная капсула, предназначенная почти для вечного хранения.

Делается она из меди. Этот металл очень слабо подвержен коррозии, а потому контейнер может простоять без изменений сотни и даже тысячи лет. Когда же в металле начнут возникать свищи и герметичность нарушится, содержимое капсулы будет уже не опасно. За столь долгий срок радиоактивность отходов успеет снизиться до приемлемого уровня.

Но сразу возникают другие проблемы. Где хранить такие контейнеры?

Да, это тоже достаточно сложный вопрос. Но решаемый. На первых порах подходящим местом казалось дно океана. В некоторых странах успели забросить туда довольно много контейнеров. Но теперь такое решение проблемы считают неперспективным.

Среди разных способов размещения радиоактивных отходов, например, на антарктическом скальном грунте или в районах гранитных формаций, отдается предпочтение соляным шахтам. Причина такого выбора довольно проста. Известно, что соль хорошо растворима в воде. А потому, столкнувшись с большими соляными залежами, можно с уверенностью сказать: они очень долгое время (сотни лет) не контактировали с водой. А значит, этого не должно произойти и в будущем. Разумеется, я упрощенно излагаю идею. И подобные выводы подкреплены серьезными исследованиями.

Кроме того, соль хороша еще в другом отношении. Теплота, выделяемая радиоактивными отходами, вызывает пластическую текучесть соли. В результате она оплавит контейнер. А это — дополнительная защита.

Но конечно, выбором места проблема не ограничивается. Ведь речь идет не о вульгарном захоронении, а об инженерном сооружении. В нем необходимы системы контроля, вентиляции, подъемные механизмы и т. д.

Однако технические пути решения задачи достаточно проработаны и ясны. То же самое можно сказать в отношении других составляющих ядерного энергетического цикла. Хотя, безусловно, это не означает, что все трудности уже преодолены.



Ашот Аракелович, а не слишком ли дорого обходится решение подобных проблем? Вы упомянули о том, что захоронение отходов требует немалых капитальных вложений. Но и другие мероприятия тоже не дешевы: например, вывод из эксплуатации отслуживших ядерных реакторов. Здесь, как известно, существуют три варианта, и трудно сказать, какой дороже — консервация, захоронение или демонтаж? Как сообщают, единственный в истории США демонтаж реактора превзошел по стоимости само строительство: 6,9 миллиона долларов против 6 миллионов. Речь о реакторе Элк Ривер.

Да, это известный случай. Чтобы свести к минимуму облучение рабочих, ведущих демонтаж, корпус реактора разрезали под водой с помощью плазменной горелки. Однако происходило это двадцать лет назад, и мощность установки на Элк Ривер была в десятки раз меньше, чем у современных реакторов. Вряд ли опыт подобной работы можно считать значительным и экстраполировать его на сегодняшний день.

Разумеется, мое замечание следует воспринимать как уточнение. И сказанное не означает никакого отрицания: думаю, расходы в данной области сократить не удастся. Скорее наоборот: они будут расти. Но иного пути нет…

Строго говоря, абсолютно безопасных источников энергии не существует: при неправильном обращении уголь самовоспламеняется, водород взрывается. Даже солнечные электростанции не безупречны в этом отношении.

Специалистам памятен взрыв, случившийся в 1986 году на солнечной электростанции в испанском городе Табернас. Пожар охватил не только солнечные батареи и пульт управления, но проник и дальше. Когда огонь добрался до блоков, где использовался натрий, бедствие приняло особенно страшный характер. Ведь этот металл на редкость активен: достаточно небольшого нагрева, и при контакте с воздухом он мгновенно воспламеняется, а при соприкосновении с водой взрывается… Огонь бушевал много часов подряд, а пожарные ничего не могли сделать…

Разумеется, об этом случае я вспомнил не для того, чтобы опорочить солнечную энергетику. Но согласитесь, подобные примеры убедительно доказывают, что развитие научно-технического прогресса связано с определенным риском, зачастую труднопредсказуемым. А потому любое техническое новшество должно предусматривать системы, позволяющие безопасно его эксплуатировать, демонтировать и т. п. А значит, какие-то дополнительные расходы здесь неизбежны.

Экономить на безопасности не только рискованно, но и безнравственно.

И здесь вот на что хотелось бы обратить внимание. Как ни странно, но до сих пор не все еще понимают, что безопасность в атомной энергетике и, скажем, на железнодорожном транспорте — это совершенно разные понятия. Характер потерь — даже при одинаковом количестве жертв явных — при аварии на АЭС качественно иной. У нас пока мало изучены такие вопросы, как влияние малых доз радиации на живое. Атмосфера, грунт, вода, пищевые цепочки — здесь возникают очень сложные взаимодействия. Они могут иметь отдаленные последствия, прежде всего генетические. Об этом нельзя забывать.

То, что подобные вопросы требуют тщательных исследований, само собой разумеется. Но данные обстоятельства должны обязательно учитываться при проектировании АЭС, при нормировании их безопасности и всех составляющих ядерного топливно-энергетического цикла.

Но в таком случае не будет ли дешевле отказаться от атомной энергетики совсем? Или хотя бы последовать примеру США: прекратить строительство новых станций, провести необходимые исследования, а затем уже делать следующий шаг?

Некоторое замедление темпов развития атомной энергетики у нас в стране предусмотрено. Но здесь надо учитывать сложившуюся ситуацию.

Известно, что европейская часть СССР — наиболее энергопотребляющий регион нашей территории. Вместе с Уралом он «забирает» 80 % всех топливно-энергетических ресурсов. В то же время свыше 90 % энергетических запасов находится на востоке. В результате уже сегодня использование гидроресурсов на Европейской равнине вдвое выше, чем в других регионах. А за донбасским углем приходится идти на глубину свыше километра.