Страница 32 из 100
По мере развития скоростных качеств самолетов и уточнения действующих на самолет нагрузок расчетная величина разрушающей перегрузки постоянно возрастала: 1912 г. – 3; 1914 г. – 4; 1918 г. – 8; 1923 г. – 12 [72]. Однако постепенно совершенствующаяся методика статического расчета позволила сохранить относительный вес конструкции в пределах 0,30-0,35.
Обобщение и развитие научных данных, полученных в годы первой мировой войны, оказало существенное воздействие на прогресс самолетостроения. Если в начале века проводился лишь проверочный расчет – полетит ли самолет, то позднее в практику конструкторской работы вошел предварительный аэродинамический расчет. Это оказало влияние на выбор схемы и параметров самолета, типа и мощности двигателя и т.д. Эмпирический подход в конструировании начал уступать место научно-обоснованному проектированию.
Как известно, основной дилеммой для авиаконструктора является выбор соотношения между весом и аэродинамикой летательного аппарата. Оба фактора имеют большое влияние на летные характеристики самолета. Однако, если улучшение полетных свойств благодаря уменьшению веса конструкции не зависит от скорости, то влияние аэродинамического "облагораживания" пропорционально квадрату скорости воздушного потока: сх = kV2. В 20-е годы скорость самолетов составляла 200- 300 км/ч, и меры, направленные на улучшение внешних форм, сравнительно мало сказывались на технических характеристиках. Например, уменьшение коэффициента лобового сопротивления на 20 %, требующее дополнительных усилий и затрат и ведущее к увеличению веса планера самолета, давало прирост в скорости только на 25-30 км/ч. Поэтому не удивительно, что в рассматриваемый период выбор вес – аэродинамика делался в пользу веса, и плохообтекаемые расчалочные бипланы доминировали над более обтекаемыми, но более тяжелыми свободнонесущими монопланами. Даже специальные гоночные самолеты в 20-е годы часто делали по бипланной схеме. Принципы конструирования аэродинамически совершенного самолета были хорошо известны [75], но они интересовали больше ученых-аэродинамиков, чем конструкторов-практиков.
В 20-е годы авиация стала играть заметную роль не только в военной сфере, но и в мирной жизни. Кроме пассажирских и почтовых перевозок самолеты начали использовать в медицине как транспортное средство для срочной врачебной помощи, сельском хозяйстве (опыление посевов), для тушения лесных пожаров, для спасения людей на море, для географических и метеорологических исследовании. Во многих странах авиапромышленность стала одной из основных технических отраслей. Особенно интенсивно развитие авиационного производства происходило во второй половине 20-х годов. Только за 1925- 1929 гг. в мире было построено более 50 тысяч самолетов, 3/4 из них составляли военные машины [76, с. 579]. Затраты на авиацию в 1930 г. составляли: в Англии – 8202 тыс. фунтов стерлингов (около 200 млн.рублей по курсу того времени), во Франции – 750 млн. франков (100 млн. руб.), в США – 38549 тыс. долларов (190 млн. руб.) [1, с. 61].
Если вначале развитие авиации основывалось на достижениях других видов техники (двигателестроение, судостроение и т.д.), то в 20-е годы авиационная техника сама начала оказывать влияние на общий научно-технический прогресс. Успешное продвижение авиации требовало развития новых специальных производств, создания новых материалов. Впоследствии эти новшества находили применение во многих областях техники. Так, например, в 20-е – 30-е годы авиационные материалы – дюраль, высокопрочные легированные стали – были использованы в транспортном машиностроении (корпуса кораблей, автомобилей, вагонов) и в станкостроении. Результаты авиационных аэродинамических исследований начали применять при создании скоростного наземного транспорта, при проектировании крупных зданий и инженерных сооружений. Методы прочностного расчета, позволявшие создавать прочные и легкие конструкции, стали использовать во многих областях общего машиностроения. Это лишь некоторые примеры.
Если сравнивать послевоенное пятнадцатилетие с другими этапами в истории авиации, его можно охарактеризовать, в целом, как этап экстенсивного развития. И все же, как следует из данной главы, это был заметный шаг в эволюции авиационной техники.
15* Критерий подобия, показывающий соответствие условий эксперимента реальным условиям. Значение Re пропорционально плотности воздуха.
ГЛАВА 2. НА ПУТИ К СКОРОСТНОЙ АВИАЦИИ
Условием прогресса техники является опережающее развитие научно-исследова- тсльской деятельности. В 20-е годы авиация развивалась, главным образом, на основе научных достижений периода первой мировой войны. В свою очередь, научно-исследовательские и опытно-конструкторские работы, проводившиеся в 20-е годы, создали предпосылки для качественного скачка в эволюции самолетов в 30-е годы. Данная глава посвящена истории научных открытий и технических изобретений, оказавших революционное влияние на прогресс в авиационной технике в первой половине 30-х годов.
Как известно, в 20-е годы в конструкции самолетов использовались три основных типа обшивки: а) полотняная, не предназначенная для восприятия нагрузок; б) тонкая металлическая гофрированная поверхность, способная выдерживать только нагрузки на кручение; в) фанерная обшивка, которая, наряду с нервюрами и лонжеронами, участвовала в восприятии всех видов нагрузок в полете ("работающая обшивка").
Гладкая работающая обшивка, в отличие от гофра, не увеличивала общую ("смачиваемую") поверхность и, по сравнению с полотном, не провисала и не образовывала неровностей, а участие в восприятии нагрузок должно было обеспечивать меньший вес внутренней силовой конструкции. Однако на практике происходило по другому: из-за отсутствия надежных методов расчета тонкостенной подкрепленной оболочки (чем, с точки зрения прочнистов, является крыло с работающей обшивкой) ее вес оказывался намного больше, чем в случае использования полотняной или тонкой гофрированной металлической поверхности. Именно поэтому основоположник применения фанерной обшивки в авиастроении А. Фоккер на своих самолетах употреблял работающую обшивку только в конструкции крыла, фюзеляж же имел легкую полотняную обтяжку.
Первый шаг в развитии расчетов авиационной оболочечной конструкции был сделан во второй половине 20-х годов, когда научный сотрудник фирмы Рорбах Г. Вагнер создал "теорию диагональных напряжений". Согласно выводам Вагнера, подкрепленная по контуру металлическая пластина способна воспринимать возникающие в ней диагональные нагрузки даже после потери устойчивости и, следовательно, нет необходимости в применении очень частого подкрепляющего силового набора в виде нервюр и стрингеров [1]. В начале 30-х годов теория Вагнера получила дальнейшее развитие в работах немецкого ученого Т. фон Кармана, после войны работавшего в США. Карман вывел ряд формул для оценки предельных напряжений в полумонококовой конструкции, пригодных для инженерных расчетов. Правда, из-за ряда допущений в формулах расчеты приходилось проверять экспериментальным методом [2, с. 28-29].
Уточнению теоретических методов расчета свободнонесущего крыла с обшивкой, участвующей в восприятии нагрузок, способствовали исследования сотрудника НАКА П. Куна и нашего соотечественника В. Н. Беляева. Кун установил зависимость распределения напряжений в обшивке от внутренней силовой конструкции, а Беляев дал новый метод расчета свободнонесущего крыла и ввел понятие редукционного коэффициента, позволяющего привести все сечения крыла к материалу с единым модулем упругости [3, с. 75; 4, с. 300].
Новый взгляд на механизм восприятия нагрузок тонкостенной оболочкой способствовал распространению работающей обшивки в самолетостроении, т.к. выводы ученых свидетельствовали о том, что местная потеря устойчивости в обшивке не представляет опасности разрушения, и конструкция может быть легче, чем полагали прежде.