Страница 39 из 47
А как насчет желтой гусеницы? Можно ли считать, что она подтверждает утверждение «Все вороны черные»?
Чтобы ответить на этот вопрос, сформулируем исходное утверждение в иной, но логически эквивалентной форме; «Все, что не черно, неворона».
Ученый. Я обнаружил нечто нечерное — желтую гусеницу. Гусеница — явно не ворона, и ее можно рассматривать как пример, подкрепляющий правильность утверждения «Все, что не черно, неворона» и, следовательно, эквивалентного утверждения «Все вороны черные».
Нетрудно найти миллионы нечерных объектов, каждый из которых не является вороной. Можно ли рассматривать их как примеры, подкрепляющие правильность утверждения «Все вороны черные»?
По мнению изобретателя этого парадокса профессора Карла Гемпеля, рыжая корова увеличивает вероятность того, что все вороны черные. Другие философы придерживались иного мнения. А как по-вашему?
Парадокс Гемпеля — наиболее известный из открытых сравнительно недавно парадоксов, связанных с подтверждением истинности того или иного утверждения. «Заманчивая перспектива, открываемая перед нами возможностью решать орнитологические проблемы, не выходя под дождь, — замечает Нельсон Гудмен (см. следующий парадокс), — настолько заманчива, что не может не таить в себе какого-то подвоха».
Проблема состоит в том, чтобы указать, где именно скрыт подвох. По мнению самого Гемпеля, наблюдение нечерного объекта, не являющегося вороной, может рассматриваться как пример, подкрепляющий утверждение «Все вороны черные», но лишь в бесконечно малой мере. Предположим, что мы проверяем гипотезу о небольшом числе объектов, например о 10 игральных картах, разложенных на столе вверх рубашкой. Пусть наша гипотеза состоит в том, что все черные карты пики. Начнем переворачивать карты одну за другой вверх картинкой. Каждый раз, когда перевернутая карта окажется пиковой масти, мы получим пример, подкрепляющий нашу гипотезу.
Сформулируем ту же гипотезу несколько иначе: «Все карты непиковой масти красные». Ясно, что каждая перевернутая нами карта непиковой масти и к тому же красная подтверждает первоначальный вариант гипотезы. Действительно, если первая карта окажется пиковой масти и, следовательно, черной, а остальные 9 карт окажутся красными и непиковой масти, то наша гипотеза блестяще подтвердится.
Эта же процедура, применяемая к нечерным неворонам, считает Гемпель, кажется нам столь странной потому, что множество неворон на Земле неизмеримо больше множества ворон, поэтому нечерная неворона подтверждает нашу гипотезу лишь в пренебрежимо малой мере. Если мы, находясь у себя дома и заведомо зная, что никаких ворон у нас нет, оглядим свое жилище в поисках неворон, то не приходится удивлятся тому, что у нас дома не окажется ни одной нечерной вороны.
Тем не менее если мы, не располагая дополнительными сведениями об отсутствии в нашем доме всяких ворон, обнаружим нечерную неворону, то в теоретическом плане такая находка подтверждает гипотезу о том, что все вороны черные.
Противники Гемпеля ссылаются на то, что открытие, например, желтой гусеницы или рыжей коровы с тем же основанием можно рассматривать как пример, подтверждающий гипотезу «Все вороны белые».
Но как может один и тот же объект подтверждать правильность и гипотезы «Все вороны черные», и гипотезы «Все вороны белые»? Парадоксу Гемпеля посвящена обширная литература. Этот парадокс играет основную роль в дискуссии о подтверждении знания, которой посвящена статья Весли Солмона «Подтверждение» (Scientific American, май 1973).
Вот еще один знаменитый парадокс теории подтверждения, основанный на том, что многие предметы со временем изменяют свой цвет. Зеленые яблоки, созревая, становятся красными, волосы к старости седеют, серебро со временем чернеет.
Нельсон Гудмен называет предмет «зелубым», если тот удовлетворяет двум условиям: во-первых, остается зеленым до конца века и, во-вторых, становится голубым после 2000-го года.
Рассмотрим два различных высказывания: «Все изумруды зеленые» и «Все изумруды зелубые». Какое из них надежно?
Как ни странно, оба утверждения подкреплены одинаково надежно! Каждое когда-либо сделанное наблюдение изумруда может рассматриваться как пример, подкрепляющий оба утверждения, в то время как ни один контрпример не известен! Объяснить сколько-нибудь вразумительно, почему одно утверждение следует принять, а другое отвергнуть, не так-то просто.
Парадоксы Гемпеля и Гудмена показывают, как мало мы понимаем истинную роль, отводимую статистике в научном методе. Мы лишь знаем, что без статистических методов наука не могла бы продолжать извечный поиск законов, действующих в нашей загадочной Вселенной.
6. ВРЕМЯ
Парадоксы о движении, сверхзадачах, путешествиях во времени и обращении времени
От мельчайших субатомных частиц до гигантских галактик наша Вселенная находится в состоянии непрестанного изменения; ее чудесная мозаика каждую микросекунду трансформируется в неумолимом «потоке» времени. (Слово «поток» я взял в кавычки потому, что в действительности течет Вселенная. Утверждать, будто время течет, так же бессмысленно, как утверждать, что длина простирается.)
Трудно представить себе реальный мир без времени. Объект, существующий лишь в течение нулевого времени 0 секунд), не существовал бы вообще. Или существовал бы? Во всяком случае, течение Вселенной достаточно равномерно для того, чтобы мы могли производить измерения, а измерения порождают числа и уравнения. Можно считать, что время не входит в чистую математику, но в прикладной математике от элементарной алгебры до математического анализа и далеко за его пределами имеется немало проблем, в которые время входит как фундаментальная переменная.
В этой главе собрано множество известных парадоксов о времени и движении. Некоторые из них, например парадоксы Зенона, оживленно обсуждались еще древними греками. Другие парадоксы, такие, как «замедление» времени в теории относительности и так называемые «машины бесконечности», способны решать «сверхзадачи». Все они еще больше разохотят вас к парадоксам и к математике.
Упомянем лишь о некоторых связях, ведущих прямиком от собранных в этой главе парадоксов к серьезной математике и науке.
Парадокс с велосипедным колесом знакомит вас с циклоидой и служит великолепным введением в геометрию кривых, более сложных, чем конические сечения. История о разочаровании, постигшем лыжника, дает наглядное представление о мощи методов элементарной алгебры, позволяющей доказать неожиданный результат. Парадоксы Зенона о резиновом канате, сверхзадачах и собаке, бегающей от одного хозяина к другому, знакомят с понятием предела, весьма существенным для понимания дифференциального и интегрального исчисления и всей высшей математики. Решение этих парадоксов связано с теорией бесконечных множеств Георга Кантора, с которой мы уже встречались в главе 2. Задача о червяке, ползущем по резиновому канату, решается с помощью знаменитого так называемого гармонического ряда.