Страница 30 из 47
Вычислить прибыль, которую приносит игорному дому игра «Чак-э-лак», по формулам — дело довольно хитрое. Проще всего составить полный список всех 216 возможных исходов бросания 3 игральных костей и убедиться, что в 120 случаях на трех костях выпадает 134 различное число очков, в 90 случаях одно и то же число выпадает на двух костях и в 6 случаях — на трех костях. Предположим, что игорный дом провел серию из 216 партий в «Чак-э-лак», причем во всех 216 случаях исходы бросания трех костей были различными. В каждой партии 6 людей поставили по 1 доллару на каждое из 6 чисел. Следовательно, банкомет собрал ставок на общую сумму 210х6 = 1296 долларов. В тех случаях, когда на всех трех костях выпало различное число очков, он выплатил 120х6 = 720 долларов. В тех случаях, когда на двух костях выпало по одинаковому числу очков, банкомет выплатил 90х2 = 180 долларов тем, кто угадал число очков на третьей кости (неповторяющееся), и 90х3 = 270 долларов тем, кто угадал число очков, выпавшее на двух костях. Наконец, в тех случаях, когда одно и то же число очков выпало на трех костях, банкомет выплатил 6х4 = 24 доллара. Таким образом, всего банкомет выплатил 1194 доллара.
Прибыль игорного дома составила 102 доллара, или 102/1296 = 1,078…, то есть более 7,8 %. Это означает, что в длинной серии игр в среднем игрок теряет около 7,8 цента на каждый поставленный им доллар.
А каковы шансы на выигрыш при одном бросании?
Если кости выкрашены в различные цвета, например одна в красный, другая в зеленый, а третья в синий цвета, то 1 очко на красной кости при любом числе очков на двух остальных костях может выпасть 36 различными способами. В 30 случаях число очков на красной кости отлично от 1, на зеленой кости равно 1, на синей кости — любое. Наконец, в 25 случаях число очков на красной и на зеленой костях отлично от 1, а на синей равно 1. Следовательно, в 91 случае из 216 по крайней мере на одной кости выпадает 1 очко. Следовательно, вероятность выиграть, поставив на 1 очко, составляет 91/216, то есть значительно меньше 1/2. То же самое справедливо и относительно любого другого числа очков.
У одной дамы было два попугая. Однажды гость спросил ее:
Гость. Один из попугаев самец?
Хозяйка. Да.
Какова вероятность того, что оба попугая самцы? Эта вероятность равна 1/3.
Предположим, что гость спросил даму, указывая на клетку с темным попугаем:
Гость Это самец?
Хозяйка. Да
На этот раз вероятность того, что оба попугая самцы повышается до 1/2. Странно! Почему вопрос, заданный о птице с темным оперением, так сильно сказывается на вероятности?
Парадокс легко решается, если выписать все возможные случаи.
Если гость знает, что один из попугаев самец, то возможны три случая. Только в одном из них оба попугая самцы Следовательно, вероятность того, что оба попугая самцы, составляет 1/3. (Мы предполагаем, что в каждой клетке с равной вероятностью может оказаться как самец, так и самка.)
Но если гость знает, что темный попугай самец, то возможны лишь 2 случая. Только в одном из них оба попугая самцы. Следовательно, вероятность того, что оба попугая самцы, составляет 1/2.
Задачу с попугаями можно промоделировать, попросив кого-нибудь бросить 2 монеты различного достоинства и высказать некоторые утверждения относительно исходов бросаний. Бросающий может избрать одну из нескольких процедур.
1. Если выпадут два «орла», заявить: „По крайней мере одна монета выпала вверх «орлом»". Если выпадут две «решки», заявить: „По крайней мере одна монета выпала вверх «решкой»". Если одна монета выпадет вверх «орлом», а другая — вверх «решкой», заявите «По крайней мере одна монета выпала вверх…» и дальше по своему усмотрению сказать либо «орлом», либо «решкой». Какова вероятность, что обе монеты выпали вверх той стороной, которую назвал бросающий?
Ответ: 1/2.
2. Бросающий монеты заранее предупреждает, что заявит: „По крайней мере одна монета выпала вверх «орлом»" только при условии, если это действительно так. Если ни одна монета не выпадет вверх «орлом», он промолчит и бросит монеты еще раз. Какова вероятность, что обе монеты выпали вверх «орлом»?
Ответ: 1/3. (На этот раз исход, когда обе монеты выпадают вверх «решками», исключается из рассмотрения, так как при таком исходе бросающий промолчит.)
3. Бросающий монеты заранее предупреждает, что объявит о том, какой стороной вверх выпадет монета меньшего достоинства, независимо от того, будет ли это «орел» или «решка». Какова вероятность того,» что обе монеты выпадут вверх одной и той же стороной?
Ответ: 1/2.
4. Бросающий монеты заранее предупреждает, что заявит: „По крайней мере одна монета выпала вверх «орлом»" только в том случае, если вверх «орлом» выпадет монета меньшего достоинства. Какова вероятность того, что обе монеты выпали вверх «орлами»?
Ответ: 1/2.
Иногда парадокс с попугаями излагают в форме, не позволяющей решить его однозначно. Представьте себе, вы встретили незнакомца, заявившего: «У меня двое детей. По крайней мере один мальчик», Какова вероятность, что у незнакомца два сына?
Эта задача поставлена неточно: вы остаетесь в неведении относительно обстоятельств, побудивших незнакомца сделать заявление. С такой же вероятностью он мог бы, например, сообщить вам: «По крайней мере одна девочка», выбрав наугад девочку или мальчика, если у него сын и дочь, или назвав пол одного из детей, если у него два сына или две дочери. При этих условиях вероятность того, что у незнакомца два сына, равна 1/2. Подобная ситуация соответствует первой из четырех перечисленных нами процедур.
В парадоксе с попугаями неоднозначность устраняется тем, что гость задает вопрос. Первый вопрос («По крайней мере один из попугаев самец?») соответствует второй из четырех приведенных выше процедур. Второй вопрос («Темный попугай самец?») соответствует четвертой процедуре.
С парадоксом о двух попугаях тесно связан еще более удивительный парадокс, известный под названием «парадокс второго туза». Предположим, что вы играете в бридж. Взглянув после раздачи в свои карты, вы заявляете: «У меня туз». Какова вероятность, что у вас есть второй туз?
Ответ: 5359/14498, что меньше 1/2.
Предположим теперь, что всех партнеров интересует какой-то определенный туз, например, туз пик. Игра продолжается до тех пор, пока после очередной раздачи карт вы не заявите: «Туз пик у меня». Какова вероятность того, что у вас есть второй туз?
Ответ: 11636/20825, что чуть больше 1/2! Почему выбор определенного туза так изменяет шансы?
Вычисление вероятностей для всей колоды громоздко и утомительно, но суть парадокса легко понять, если воспользоваться «мини-колодой» из четырех карт, например из туза пик, туза червей, двойки треф и валета бубен. (Упрощение задачи за счет уменьшения числа элементов рассматриваемого множества нередко позволяет легко разобраться в структуре проблемы.) Колоду из четырех карт перетасуем и раздадим двум игрокам.
Существует всего 6 равновероятных вариантов взяток (по 2 карты в каждой) — см. рисунок на стр. 139.