Добавить в цитаты Настройки чтения

Страница 75 из 86

Виттен начал исследования в квантовой теории поля — в области, представляющей собой первые плоды усилий по согласованию квантовой теории с теорией относительности. Релятивистские эффекты движения там учитываются, но только в плоском пространстве-времени. (А гравитация, которая требует искривленного пространства-времени, не рассматривается.) В 1998 году в своей гиббсовской лекции[103] Виттен сказал, что квантовая теория поля «охватывает большую часть того, что нам известно о законах физики, за исключением гравитации. Семидесятилетняя история ее развития включает в себя много значимых вех — от теории „антиматерии“ до более точного описания атомов и Стандартной Модели физики частиц». Он отметил, что, развитая в большей своей части физиками, квантовая теория поля в значительной степени лишена математической строгости и поэтому не оказала большого влияния на математику как таковую.

Подошло время, продолжал Виттен, исправить этот дефект. Несколько важных областей чистой математики, по сути дела, являются квантовой теорией поля, но в иных одеждах. Собственный вклад Виттена — открытие и анализ топологических квантовых теорий поля — допускал прямую интерпретацию в терминах концепций, изобретенных целым рядом чистых математиков в рамках весьма различных контекстов. Сюда относится эпическое открытие, сделанное английским математиком Саймоном Доналдсоном, что четырехмерные пространства уникальны в том отношении, что допускают существование многих различных «дифференцируемых структур» — систем координат, в которых можно строить дифференциальное исчисление. Среди других аспектов — недавнее крупное открытие в теории узлов, известное как многочлены Джонса[104], явление, называемое зеркальной симметрией в теории многомерных комплексных поверхностей, и несколько областей из современной теории алгебр Ли.

Виттен сделал смелое предсказание — одной из важнейших тем в математике двадцать первого века будет интегрирование в основное течение математики идей из квантовой теории поля: «Перед нами здесь раскинулся обширный горный хребет, большая часть которого все еще скрыта в тумане. В математических теориях сегодняшнего дня видны только самые высокие вершины, возвышающиеся над облаками, и эти восхитительные вершины исследуются в отрыве друг от друга. В дымке все еще скрыт сам хребет, покоящийся на гранитном основании квантовой теории поля, а вместе с ним скрыты и россыпи математических сокровищ».

Филдсовская медаль была присуждена Виттену за открытие нескольких из этих скрытых сокровищ. Среди них — новое улучшенное доказательство «гипотезы о положительности массы», в силу которой гравитационная система с положительной локальной плотностью массы должна иметь положительную полную массу. Это может показаться очевидным, но в квантовом мире масса — тонкая материя. Доказательство этого результата, долго стоявшего на повестке дня, было опубликовано Ричардом Шеном и Шинтаном Яу[105] в 1979 году и принесло Яу Филдсовскую медаль за 1982 год. В новом улучшенном доказательстве Виттена использовалась суперсимметрия. То было первое применение этой концепции к важной математической проблеме.

Суперсимметрию можно понять в терминах старой головоломки, в которой спрашивается, какая пробка подойдет к бутылке, отверстие в которой может быть круглым, квадратным или треугольным. Удивительно, но требуемая форма существует, и стандартный ответ — пробка с круглым основанием, которая сходится к острию как клин. При взгляде снизу она видится окружностью; спереди — квадратом; сбоку — треугольником. Одна форма способна выполнить все три задачи, потому что трехмерный объект может иметь несколько различных «теней», или проекций, в различных направлениях.

Как работает суперсимметрия. Слева: пробка, подходящая к отверстиям трех разных форм. Справа: эффект вращения пробки.

Теперь представим себе флатландца, живущего на «полу» моего рисунка, так что ему видна проекция пробки на пол, но он и не подозревает о других проекциях. В один прекрасный день он, к своему изумлению, обнаруживает, что круглая форма каким-то образом изменилась и стала квадратом. Как такое может быть? Это определенно не симметрия.

Не симметрия — да, во Флатландии. Но когда флатландец отвернулся, кто-то, живущий в трехмерии, повернул пробку так, что ее проекция на пол превратилась в квадрат. При этом в трехмерии вращение является преобразованием симметрии[106]. Так что симметрия в более высокой размерности может иногда объяснить совершенно непостижимое преобразование в более низкой размерности.

Нечто очень похожее происходит в суперсимметрии, но вместо превращения окружности в квадрат фермионы там превращаются в бозоны. Это удивительно. В самом деле, вы можете выполнить вычисления с фермионами, напустить на каждый операцию суперсимметрии и получить результат для бозонов без всяких дополнительных усилий[107]. Или наоборот.

Подобного мы ожидаем от настоящих симметрий. Если вы стоите перед зеркалом и жонглируете мячиками, то все происходящее с вашей стороны зеркала полностью определяет происходящее с другой стороны. Ваш образ там жонглирует образами мячиков. Если выполнение последовательности приемов занимает 3,79 с с этой стороны зеркала, то без всяких измерений ясно, что выполнение той же последовательности приемов займет 3,79 с с другой стороны. Две ситуации связаны зеркальной симметрией; что бы ни происходило с одной стороны, оно происходит также и в отражении.

Суперсимметрии не настолько просты, но приводят к похожему эффекту. Они позволяют вывести свойства частиц одного типа из свойств частиц совершенно иного типа. Дело обстоит почти так же, как если бы вы могли забраться куда-то в высокомерную область вселенной и там повернуть фермион, превратив его в бозон. Частицы организуются в суперсимметричные пары: обычной частице отвечает ее повернутая версия, называемая счастицей. Электроны имеют в паре с собой сэлектроны, кварки — скварки. По историческим причинам близнец фотона называется не сфотон, а фотино. Имеется своеобразный «теневой мир» счастиц, который только слабо взаимодействует с обычным миром.

В ногу с этой идеей идет изящная математика, но массы этих предсказываемых теневых частиц слишком велики для того, чтобы их можно было наблюдать в экспериментах[108]. Суперсимметрия прекрасна, но может не быть истинной. Но даже если вопрос не состоит в прямом подтверждении, вполне возможными могут оказаться подтверждения косвенные. Наука проверяет теории главным образом через их следствия.

Виттен активно развивал суперсимметрию и в 1984 году написал статью, озаглавленную «Суперсимметрия и теория Морса». Теория Морса — это область топологии, названная по имени своего первоисследователя Марстона Морса, в которой устанавливается связь общей формы некоторого пространства с его пиками и долинами. Сэр Майкл Атья — вероятно, наиболее крупный из ныне здравствующих британских математиков — считает, что статья Виттена представляет собой «обязательное чтение для геометров, заинтересованных в понимании современной квантовой теории поля. Она также содержит блестящее доказательство классического неравенства Морса. Реальная цель статьи состоит в подготовке почвы для суперсимметричной квантовой теории поля в терминах бесконечномерных многообразий». В дальнейшем Виттен применил эти методы к другим актуальным вопросам на дальних рубежах топологии и алгебраической геометрии.

Должно быть понятно, что, когда я сказал, что Виттен не математик, я не имел в виду отсутствие у него математического таланта. Как раз наоборот — быть может, ни у кого на планете нет большего математического таланта. Но в случае Виттена к этому добавляется удивительная физическая интуиция.





103

Цель гиббсовских лекций — «предоставить широкой публике и научной общественности возможность ознакомиться с вкладом математики в современное мышление и цивилизацию». (Примеч. перев.)

104

Многочлены Джонса были изобретены в 1983 году В. Джонсом. Виттен вывел их из «квантовой теории поля», что позволило построить дальнейшие, далеко идущие обобщения. (Примеч. перев.)

105

Яу Шинтан, или Цю Чентун. (Примеч. перев.)

106

Но, разумеется, не преобразованием симметрии пробки. (Примеч. перев.)

107

Увы, вычисления приходится выполнять дважды. Приз же состоит в том, что полная теория — с учетом и бозонов, и фермионов — обладает значительно улучшенными свойствами по сравнению с каждой из своих «половинок». (Примеч. перев.)

108

Сама по себе суперсимметрия прекрасна настолько, что массы частицы и отвечающей ей суперчастицы с неизбежностью равны. Большие значения масс счастиц определяются не самой суперсимметрией, а тем, как она нарушена в реальном мире, точнее — в Стандартной Модели и ее обобщениях. (Примеч. перев.)