Добавить в цитаты Настройки чтения

Страница 24 из 27

Катушка состоит из двух бобин из твердой резины R R,разнесенных на расстояние 10 сантиметров друг от друга при помощи болтов Си гаек n, тоже из твердой резины. Каждая бобина состоит из трубки Тс внутренним диаметром около 8 сантиметров и толщиной 3 миллиметра, на которую навинчены два фланца F F,квадраты [со стороной] 24 сантиметра, расстояние между фланцами около 3 сантиметров. Вторичная обмотка S S,намотанная из лучшего провода с гуттаперчевым покрытием, имеет 26 слоев, по 10 витков в каждом, что в сумме для каждой половины составляет 260 витков. Две половины обмотки намотаны противоположно друг другу и соединены последовательно, причем соединение обеими частей сделано через первичную обмотку. Такое расположение частей, помимо того, что оно удобно, имеет еще то преимущество, что когда катушка хорошо сбалансирована, — то есть когда оба ее вывода T1 T1подсоединены к телам либо устройствам одинаковой емкости, — то опасность возникновения пробоя через первичную обмотку практически сводится на нет, и не обязательно делать толстой изоляцию между первичной и вторичной обмотками. При использовании этой катушки желательно подключать к обеим ее выводам устройства с примерно одинаковой емкостью, поскольку если емкость выводнов разная, то велика вероятность прохождения искр на первичную обмотку. Чтобы этого избежать, можно соединить среднюю точку вторичной обмотки с первичной, но это не всегда осуществимо.

Первичная обмотка РРнамотана из двух частей, противоположно, на деревянную бобину W,и все четыре вывода выведены наружу через слой масла по толстым трубкам из твердой резины tt. Выводы вторичной обмотки Тj Tjтакже выведены наружу через масло по очень толстым резиновым трубкам t1t1.Слои первичной и вторичной обмоток изолированы хлопковой тканью, разумеется, в некоторой пропорции по толщине от разности потенциалов между витками различных слоев. Каждая половина первичной обмотки состоит из четырех слоев, по 24 витка в каждом, что в сумме составляет 96 витков. Когда обе части первичной обмотки соединяются последовательно, это дает коэффициент преобразования примерно 1:2.7, а когда параллельно, то 1:5.4. Однако при работе с очень быстро переменяющимся током этот коэффициент не дает даже примерного представления об отношении электродвижущих сил в первичной и вторичной цепях. Катушка удерживается в своем положении в масле на деревянных опорах, причем толщина масляного слоя повсюду вокруг катушки составляет около 5 сантиметров. Когда масло не обязательно, пространство вокруг катушки заполняется кусочками дерева, и для этого главным образом и используется деревянный ящик В,который все окружает.

Разумеется, представленная здесь конструкция далеко не лучшая по общим принципам, но я считаю, что она достаточно хороша и удобна для воспроизведения эффектов, в которых нужны очень большой потенциал и очень малый ток.

Совместно с катушкой я использую разрядник либо обычного вида, либо модифицирован- ного. В первый я внес два изменения, которые обеспечивают некоторые преимущества, и кото- рые очевидны. Если я и упоминаю о них, то только в надежде, что какой-нибудь экспериментатор найдет их полезными.

Одно из изменений, это что регулируемые шары Аи В(Рис. 4) разрядника удерживаются в латунных зажимах JJ давлением пружины, что позволяет поворачивать их разными сторонами, тем самым избавляя экспериментатора от нудной процедуры частой их полировки.

Другое изменение состоит в использовании сильного электромагнита N S,который располагается так, чтобы его ось находилась под прямыми углами к линии, соединяющей шары Аи В,и создает между ними сильное магнитное поле. Полюсные части магнита двигаются и имеют такую форму, что высовываются между латунными шарами, чтобы создавать поле насколько возможно интенсивное; а для того, чтобы на магнит не проскочил разряд, его полюсные части защищены слоем слюды М Мдостаточной толщины. Sj Sjи S2S2—это болты для крепления проводов. С каждой стороны один из болтов предназначен для крепления большого провода, а другой малого. L L— болты для фиксирования в определенном положении стержней R R,на которых держатся шары.

В другой компоновке с магнитом я беру разряд между самими закругленными полюсными частями, которые в этом случае покрываются изоляцией и желательно снабжаются отполироваными латунными набалдашниками.

Применение мощного магнитного поля дает определенные выгоды главным образом когда индукционная катушка или трансформатор, от который заряжает конденсатор, работает от токов очень низких частот. В этом случае количество основных разрядов между шарами может оказаться настолько мало, что получаемый во вторичной обмотке ток для многих экспериментов не подходит. Мощное магнитное поле служат тогда чтобы гасить дугу между шарами, как только та формируется, и основные разряды идут в более быстрой последовательности.





Вместо магнита с определенным успехом можно использовать и воздушную тягу или поддув. В этом случае дуга предпочтительно устанавливается между шарами А В,на Рис. 2 (шары а bлибо соединены, либо вообще убраны), поскольку при таком расположении дуга длинная и нестабильная, и легко поддается воздействию потока воздуха.

Если для прерывания дуги применяется магнит, то выбрать соединение, показанное схематически на Рис. 5, поскольку в этом случае токи, образующие дугу, гораздо мощнее, и магнитное поле оказывает огромное влияние. Использование магнита позволяет заменить дугу вакуумной трубкой, но при работе с откачанной трубкой я столкнулся с огромными трудностями.

На Рис. 6 и 7 показана другая форма разрядника, используемого в этих и схожих с ними экспериментах. Он состоит из множества латунных элементов С С(Рис. 6), каждый из которых имеет сферическую среднюю часть m, продолговатую нижнюю часть е,— она служит только для крепления детали в токарном станке во время полировки разрядной поверхности, — и верхнюю часть. Верхняя часть состоит из выпуклого фланца f, заканчивающегося стрежнем l с резьбой. На него навинчивается гайка n, при помощи которой к верхней части разрядника крепится провод. Фланец f служит, чтобы держать латунную деталь когда крепится провод, а также для поворачивания в любую сторону, когда нужно подставить свежую разрядную поверхность. Две толстые резиновые полоски R R(Рис. 7) с желобками g g,вырезанными под средние части С Сдеталей, служат для более плотного закрепления деталей в своем положении при помощи двух болтов С С(на рисунке представлен только один из них), проходящих через концы резиновых полосок.

Я обнаружил три очень важных преимущества, которые дает использование такого типа разрядника по сравнению с разрядником обычной формы. Во-первых, если вместо одного воздушного зазора есть множество мелких, то диэлектрическая прочность воздушного промежутка той же суммарной толщины значительно возрастает, что позволяет работать с меньшей длиной воздушного зазора, а это означает меньшие потери и меньший износ металла. Во-вторых, по причине разделения одной большой дуги на множество меньших дуг полированные поверхности служат значительно дольше. И в-третьих, этот аппарат позволяет выполнять определенную калибровку в ходе экспериментов. Обычно я при помощи листов однородной толщины выставлял элементы на определенном очень маленьком расстоянии, для которого из экспериментов сэра Вильяма Томсона известна определенная электродвижущая сила, требующаяся для искрового пробоя через него.

Разумеется, следует помнить, что с увеличением частоты значительно уменьшается искровой промежуток. Беря любое количество зазоров, экспериментатор получает грубое представление об электродвижущей силе и может легче повторять эксперимент, поскольку без проблем может вновь и вновь выставлять зазор между набалдашниками. При помощи разрядника такого тина мне удавалось поддерживать колебания, при которых невооруженным глазом никаких искр между набалдашниками не наблюдалось, и не происходило сильно ощутимого повышения их температуры. Оказалось также, что такая форма разрядника хорошо подходит для использования во множестве схем с конденсаторами и цепями, которые часто очень удобны и экономят время. Я в основном использовал его в схемах, схожих с представленным на Рис. 2, когда образующие дугу токи малы.