Добавить в цитаты Настройки чтения

Страница 30 из 31

Одно из самых древних изделий из железа найдено в Египте: это ожерелье из прокованных полосок метеоритного железа. Оно датировано IV тысячелетием до н. э. Примерно к тому же периоду относится и кинжал из метеоритного железа, найденный на юге Месопотамии (современный Ирак).

Но метеоритное железо встречается довольно редко, поэтому перед людьми встала задача научиться получать его из руд. Для восстановления железа из его окислов окисью углерода требуется температура около 700 °C. Однако железо, получаемое таким путем, представляет собой запеченную массу из металла, его карбидов, окислов и силикатов. При ковке она рассыпается.

Первые опыты с окислами железа скорее всего проводили древние гончары, стремившиеся использовать их как красящее вещество. Они применяли флюс вместе с костной смесью (СаО, Р 2O 5). При этом также получались железные крицы, удобные для ковки. При температурах 1075 °C и выше для получения крицы флюсы не требовались. Таких температур достигали, складывая руду и древесный уголь слоями в яму или каменный горн. Уголь поджигали и через эти слои продували «сырой» (неподогретый воздух). Вначале мастера осуществляли продувку при помощи своих легких, вдувая воздух через отверстия внизу горна. Позже стали применять мехи, сшитые из шкур животных.

Сгорая в потоке воздуха, уголь нагревал руду и частично восстанавливал ее до состояния железа. Оставшаяся часть окислов железа вместе с окислами других примесей плавилась и образовывала жидкий шлак. На дне горна получали крицу – комок пористого, тестообразного, пропитанного жидким шлаком металла. Многократной проковкой крицы в горячем состоянии шлак «выжимали» и получали железную поковку, представлявшую собой сварочное ковкое железо, или мягкую сталь. Содержание углерода в такой стали – 0,12–0,26 %; серы, фосфора и других примесей очень мало.

Следует отметить, что железо всегда содержит примеси. Фосфор и сера относятся к вредным примесям, так как повышают хрупкость металла. Техническим железом называют сплав железа и углерода, содержащий 99,8–99,9 % железа, 0,1–0,2 % примесей и 0,02 % углерода. Но такой материал мягкий, поэтому практически не находит применения. Уникальность железа заключается в том, что в соединении с углеродом резко повышается его прочность и твердость. Таким образом, процесс получения железа из руды одновременно повышает механические свойства железа. Все соединения железа с углеродом можно разделить на две группы: стали и чугуны. Стали содержат до 2 % углерода, чугуны – свыше 2 %. Вначале люди использовали только сталь. Чугун, который образовывался при сильном науглероживании железа, не применялся, поскольку был хрупким и не поддавался ковке.

Долгое время для производства стали использовался сыродувный процесс. Но еще в древности металлурги применяли тигльный способ выплавки железа, меди, бронзы. Добытый металл переплавлялся в небольших огнеупорных сосудах – тиглях. Таким образом металл очищался от нежелательных примесей, его структура улучшалась. Тигльная сталь применялась для изготовления холодного оружия – мечей, сабель, кинжалов, отличавшихся необычайной остротой и упругостью. Именно из тигльной стали делали знаменитые дамасские клинки.

На процесс изготовления железа влияет режим термообработки. Уже первые кузнецы заметили, что если нагретый докрасна слиток металла опустить в холодную воду или иную охлажденную жидкость, его твердость резко возрастет. Этот процесс назвали закалкой. В некоторых старых металлургических трудах упоминается «закалка скотинным рогом с солью». По сути, это азотирование – насыщение поверхностного слоя азотом.

Потребность в стали постоянно росла. Увеличивались размеры горнов, совершенствовалась их форма, повышалась мощность дутья. Высота печей достигала нескольких метров, воздуходувные трубы приводились в движение специальными водяными трубами и огромными водяными колесами. Температура в печах повысилась до 1250–1350 °C, что привело к увеличению количества чугуна, получаемого при плавке. В то время свойства чугуна не позволяли применять его для промышленных нужд. Но в XIII–XIV веках был открыт «кричный передел». Его суть заключалась в том, что чугун загружали в печь вместе с рудой. В результате происходило окисление примесей, в первую очередь углерода. Переплав чугуна позволял получать сталь хорошего качества и в больших количествах. Двухстадийный способ получения стали из руды сохранился и по сей день, являясь основой современных схем производства стали (за исключением бездоменной металлургии).





Технический переворот в металлургии произошел в конце XVIII – начале XIX века с изобретением паровой машины. И как следствие – рост промышленного производства и увеличение числа машин. Это вызвало повышенную потребность в металле и послужило толчком к развитию металлургии. Развитию же препятствовало отсутствие заменителя древесного угля. Он был дорог, запасы древесины для его производства – ограничены. Еще в 1558 г. английская королева Елизавета запретила производить уголь из древесины. Поэтому в качестве топлива стали использовать каменный уголь. Первые попытки использования угля были неудачными: проблемой стала высокая температура его воспламенения. Кроме того, чугун, выплавленный на каменном угле, содержал много серы и фосфора, поэтому для передела в сталь не годился. В 1619 г. англичанин Додлей получил патент на производство чугунного литья или брусков путем применения каменного угля в печах с раздувательными мехами. Но внедрить в практику это изобретение ему не удалось, и свой секрет он унес в могилу.

В 1713 г. Абрахам Дерби-старший нашел способ очистки каменного угля от примесей путем его обжига. Такой способ назвали коксованием. Но Дерби-старший применял кокс в доменной плавке лишь частично (из-за отсутствия техники для мощного воздушного дутья). В 1735 г. его сын Абрахам использовал для доменного дутья паровую машину. Качество выплавленного чугуна было высоким, а производительность из-за значительного увеличения температуры резко возросла. Дерби-сын заменил деревянные рельсы, по которым подавали вагонетки с рудой, на чугунные. Так появилась первая железная дорога. В 1779 г. Абрахам Дерби-внук построил первый в мире мост из литых чугунных деталей.

Применение каменного угля сдерживалось высоким содержанием серы в нем. Это придавало чугуну повышенную хрупкость. Проблему помогли решить пудлинговые печи. В них металл не соприкасался с коксом, а нагревался теплом, отраженным от свода. Для более равномерного выгорания углерода металл постоянно перемешивали, что и дало название процессу («puddle» по-английски – перемешивать).

Следующим шагом в развитии доменного процесса стал нагрев воздуха, подаваемого в печь. Эта идея, предложенная шотландцем Нильсоном, первоначально была встречена в штыки. Тогда полагали, что чем холоднее воздух, тем лучше идет плавка. Внедрение этого изобретения позволило сократить расход кокса на треть, а выплавку чугуна увеличить в полтора раза. Идею Нильсона развил английский инженер Каупер. В 1857 г. он предложил оригинальную конструкцию доменного воздухонагревателя (каупера), позволявшего нагревать воздух до 600–700 °C. Современные кауперы позволяют нагреть воздух перед подачей в печь до 1200 °C.

К середине XIX века существовавшие тогда пудлинговый процесс и кричный передел не удовлетворяли требования металлургов из-за продолжительности, трудоемкости и низкого качества металла, а тигльный способ, позволявший получать хорошую сталь, был дорогим и применялся мало.

В то время даже лучшие мастера руководствовались в своей работе исключительно опытом предшественников и своим собственным. О процессах, происходящих в металле при плавке и обработке, они практически ничего не знали, поэтому сознательно управлять ими не могли. Это не позволяло совершенствовать железоделательное производство.

Великий русский ученый-металлург Павел Петрович Аносов задался целью превратить металлургию железа из ремесла в науку. После окончания в 1817 г. Горного корпуса в Петербурге он получил назначение на заводы Златоустовского горного округа на Урале. Экспериментируя с различными процессами получения стали, Аносов сумел получить сталь высокого качества, сократив продолжительность выплавки в несколько раз. Ему удалось получать сталь непосредственно из чугуна. Заветной мечтой русского металлурга была разгадка тайны булата. На пути к ее раскрытию Павел Петрович провел тысячи опытов с различными добавками: кремнием, марганцем, алюминием, титаном, даже с золотом и платиной. В конце концов молодой инженер пришел к выводу, что булат – это только железо и углерод. А опыты с добавками других металлов в железо положили начало металлургии легированных сталей.