Добавить в цитаты Настройки чтения

Страница 28 из 41

…Высотой и холодом

Другая ситуация, где человеческий фактор может проявляться негативно, связана с холодом и быстрой сменой давления. Так происходит, например, при высокогорных восхождениях. Для изучения горной болезни ученые CRSSA применяют оборудованную мощной турбиной гипобарическую камеру, аналогичную той, что используют для лечения кессонной болезни ныряльщиков. В ней можно создавать различные сочетания давления, температуры и ветра. Наиболее суровые опыты по изучению последствий горной болезни проходят в условиях, соответствующих высочайшим вершинам (8 км), где температура воздуха опускается ниже –40°C, а скорость ветра достигает 25 м/сек.

Одна из причин горной болезни — кислородное голодание, или гипоксия. Вследствие снижения атмосферного давления уменьшается не процентное содержание кислорода в воздухе (как многие часто полагают), а его парциальное давление — из-за чего кислород медленнее, чем обычно, доставляется к тканям организма. Здесь в первую очередь страдает головной мозг. Симптомы гипоксии проявляются начиная с высоты 1 500 м. На высоте 3 000 м организм еще борется с недомоганием и старается улучшить снабжение тканей кислородом, включая разные компенсаторные механизмы. Выше 3 500 метров физиологические процессы ухудшаются, так как организм уже не способен утолить жажду кислорода, появляются тошнота, головокружение, ухудшение памяти и странное поведение. Один из методов борьбы с болезнью — постепенная акклиматизация на высоте. Например, альпинисты, намереваясь покорить гималайскую вершину, встают лагерем на несколько недель на высоте между 5 000 и 7 000 м и только потом идут на штурм пика. Центр в Гренобле предоставляет скалолазам возможность в лабораторных условиях привыкнуть к высоте и отсрочить появление болезни во время экспедиции. Согласно разработанной методике скалолазы проходят несколько высокогорных сеансов в гипобарической камере, постепенно увеличивая время пребывания внутри. По результатам этих опытов ученые сделали любопытное открытие. Оказывается, молодой организм не всегда сопротивляется враждебным условиям лучше, чем стареющий.

Еще одна тема исследования — изучение неподвижного человека в условиях холода, то есть тех состояний, что обычно бывают у пострадавших людей во время транспортировки зимой или в горах. Полураздетый испытатель лежит в камере при температуре +1°C в течение двух часов. Затем врач осматривает его, проверяет сердцебиение, температуру тела и анализирует поведенческие реакции. Когда организм замерзает, наши внутренние органы не остаются в стороне, они противодействуют по мере сил, сжигая больше калорий и добавляя тем самым тепла, чтобы поддерживать внутреннюю температуру тела на уровне 36,6°. Если калорий не хватает, то тело остывает— наступает гипотермия. А температура тела ниже 35°C быстро приводит к гибели. Но как показали эксперименты, есть люди, которые иначе реагируют на холод: их организм приспосабливается, снижая температуру тела до 35°C без риска для жизни.

…Шумом и контактом

Информационное перенасыщение, столь актуальное в наше время, опасно тем, что вызывает дезориентацию личности и снижение работоспособности. Реакции организма на стресс такого рода пока почти не изучены. Большие потоки звуков и образов от разных источников, сложные пространственные перемещения, ускорение — все это причиняет вред нервной системе и вызывает изменения сознания. В таких условиях обычно находятся летчики и гонщики, их состояние легче изучать при помощи особого симулятора вождения, который создает иллюзию того, что испытуемый находится в реальной ситуации за рулем автомобиля или самолета. На самом деле он полностью погружен в искусственные условия, где его органы чувств подвергают противоречивым и бессвязным воздействиям, а тело заставляют пребывать в неестественных позах. Через какое-то время человек начинает испытывать недомогание, известное как «тренажерная болезнь», сопровождаемая головокружением, тошнотой, слабостью. В этом исследовании пока больше вопросов, чем ответов: как в условиях подобного стресса человек различает, где реальность, а где иллюзия, и различает ли вообще? Как можно побороть болезнь, вызываемую одновременным воздействием разных факторов? И как при этом изменяется работоспособность? К информационному шуму относят не только звуки, но и непосредственные прикосновения к телу. Осязание может сослужить нам плохую службу в условиях стресса, давая мозгу неправильные сигналы, — это приведет к потере ориентации и ошибочным действиям. А осознание своего тела и умение отвечать на его сигналы ученые считают особым феноменом и называют соместезией, изучать которую невероятно трудно. Моделирование экстремальных ситуаций, усиливающих соместезию, проходит в специальном устройстве, которое фиксирует малейшие изменения пространственной ориентации человека. На глаза добровольца надевают темную маску и помещают его на движущуюcя платформу закованным в жесткий каркас. Ситуация вполне реальная: так поднимают раненых на тросе в вертолет. Конструкция предназначена для того, чтобы изменить ориентацию тела в пространстве и сбить человека с толку. Во время опыта испытуемый должен определить характер своего смещения, попытаться сдвинуться в заданном направлении. Еще один оригинальный тест на изучение ориентации в пространстве проходит в центрифуге, которая вращается на различных скоростях, временами достигая довольно больших перегрузок. При этом раздражается внутреннее ухо человека, отвечающее за чувство равновесия. Испытуемый старается перемещать различные объекты в заданное место, но поскольку центрифуга часто меняет скорость вращения, то занятие это оказывается нелегким — подводит собственное зрение. Через мозг оно получает неверные команды от внутреннего уха. Так выяснили, что этот орган — не абсолютный сенсор гравитации, а соместезия, напротив, играет ключевую роль в пространственной ориентации.





Когда край приходит

На что способен человеческий организм в крайних ситуациях? Этим вопросом наука занимается давно. Проще и гуманнее наблюдать спортсменов, нагрузки которых обычно выше того, что может вынести нетренированный индивид. Еще античные медики изучали анатомию человека на гладиаторах и тем самым положили начало спортивной физиологии. Ее расцвет пришелся на конец XIX века, к тому времени технический прогресс позволял расширить область исследований, и медицинские экспедиции потянулись в горы, пустыни, во льды. В 1888 году в Европе придумали аппарат, который позволил бы ученым получать данные о дыхании непосредственно во время восхождения альпинистов, при этом добровольцы должны были тащить на себе 7-килограммовый газометр. Ученых интересовало в первую очередь, как тело реагирует на экстремальные условия, как изменяются биохимические параметры крови, дыхания, и главное — как происходит адаптация организма. Может ли человек привыкнуть к холоду, жаре или низкому атмосферному давлению и каковы жизненные пределы? Направление, получившее название environmental physiology, или физиология природных адаптаций, несло в себе большой потенциал, особенно для военной отрасли, и его стали развивать во всем мире.

Одним из пионеров в США здесь стал Гарвардский университет, где в 1927 году создали лабораторию по изучению феномена усталости. Оборудованная климатическими комнатами лаборатория позволяла создавать различные условия окружающей среды и проводить опыты с добровольцами. Но основателю проекта Дэвиду Брюсу Диллу стены офиса «давили на плечи», и он организовывал высокогорные экспедиции. Так, в 1935 году медики отправились в Чилийские Анды, где проводили наблюдения на высоте более 6 км.

К началу Второй мировой войны физиология природных адаптаций была еще очень молодой наукой. В Европе существовало несколько групп, собиравших первичные данные, и Германия во многом лидировала. В войну исследования продолжались с удвоенной силой, тем более что испытуемых было много — в концлагерях. Немецкие врачи активно изучали гипотермию, надеясь повысить боеспособность армии в условиях восточноевропейских морозов. Жестокие эксперименты проводили на людях, испытывая организм на выживаемость в ледяной или горячей воде, под раскаленной лампой. Задействовали и декомпрессионную камеру. Так установили причину возникающей во время кессонной болезни слабости — ее вызывали пузырьки воздуха, образующиеся в кровеносных сосудах мозга. В 1942 году на одной из научных конференций результаты наблюдений доложил доктор Зигмунд Рашер.