Страница 8 из 43
Универсальное для телескопостроения правило гласит, что разрешающая способность антенны определяется отношением длины волны к диаметру зеркала телескопа. Поэтому для увеличения «зоркости» телескоп должен быть побольше, а длина волны — поменьше. Но как назло радиотелескопы работают с самыми длинными волнами электромагнитного спектра. Из-за этого даже огромные размеры зеркал не позволяют добиться высокой разрешающей способности. Не самый крупный современный оптический телескоп с диаметром зеркала 5 м может различить звезды на расстоянии всего 0,02 угловой секунды. Невооруженным глазом видны детали около одной минуты дуги. А радиотелескоп диаметром 20 м на волне 2 см дает разрешение еще в три раза хуже — около 3 угловых минут. Снимок участка неба, сделанный любительским фотоаппаратом, содержит больше деталей, чем карта радиоизлучения той же области, полученная одиночным радиотелескопом.
Широкая диаграмма направленности ограничивает не только остроту зрения телескопа, но и точность определения координат наблюдаемых объектов. Между тем точные координаты нужны для сопоставления наблюдений объекта в разных диапазонах электромагнитного излучения — это непременное требование современных астрофизических исследований. Поэтому радиоастрономы всегда стремились к созданию как можно более крупных антенн. И, как ни удивительно, радиоастрономия в итоге намного обогнала по разрешению оптическую.
У телескопа обсерватории Аресибо в Пуэрто-Рико — самое большое в мире неподвижное цельное зеркало диаметром 305 м. Над сферической чашей на тросах висит конструкция с приемным оборудованием массой 800 тонн. По периметру зеркало окружено металлической сеткой, которая защищает телескоп от радиоизлучения земной поверхности
Рекордсмены в одиночном разряде
Полноповоротные параболические антенны — аналоги оптических телескопов-рефлекторов — оказались самыми гибкими в работе из всего многообразия радиоастрономических антенн. Их можно направлять в любую точку неба, следить за радиоисточником — «копить сигнал», как говорят радиоастрономы, — и тем самым повышать чувствительность телескопа, его способность выделять на фоне всевозможных шумов гораздо более слабые сигналы космических источников. Первый крупный полноповоротный параболоид диаметром 76 м был построен в 1957 году в британской обсерватории Джодрелл-Бэнк. А сегодня тарелка крупнейшей в мире подвижной антенны в обсерватории Грин-Бэнк ( США ) имеет размеры 100 на 110 м. И это практически предел для одиночных подвижных радиотелескопов. Увеличение диаметра имеет три важных следствия: два хороших и одно плохое. Во-первых, самое важное для нас — пропорционально диаметру возрастает угловое разрешение. Во-вторых, растет чувствительность, причем гораздо быстрее, пропорционально площади зеркала, то есть квадрату диаметра. И, в-третьих, еще быстрее увеличивается стоимость, которая в случае зеркального телескопа (как оптического, так и радио) примерно пропорциональна кубу диаметра его главного зеркала.
Главные трудности связаны с деформациями зеркала под действием силы тяжести. Чтобы зеркало телескопа четко фокусировало радиоволны, отклонения поверхности от идеальной параболической не должны превышать одной десятой от длины волны. Такая точность легко достигается для волн длиной несколько метров или дециметров. Но на коротких сантиметровых и миллиметровых волнах требуемая точность составляет уже десятые доли миллиметра. Из-за деформаций конструкции под собственным весом и ветровых нагрузок практически невозможно создать полноповоротный параболический телескоп диаметром более 150 м. Крупнейшая неподвижная тарелка диаметром 305 м построена в обсерватории Аресибо, Пуэрто-Рико. Но в целом эпоха гигантомании в строительстве радиотелескопов подошла к концу. В Мексике на горе Сьерра-Негра, на высоте 4 600 метров, завершается строительство 50-метровой антенны для работы в диапазоне миллиметровых волн. Возможно, это последняя большая одиночная антенна, создающаяся в мире.
Для того чтобы разглядеть детали строения радиоисточников, нужны другие подходы, в которых нам и предстоит разобраться.
Крупнейшая в мире полноповоротная параболическая антенна обсерватории Грин-Бэнк (Западная Виргиния, США). Зеркало размером 100х110 м было построено после того, как в 1988 году под собственным весом обрушилась 90метровая полноповоротная антенна
Принцип действия
Радиоволны, испускаемые наблюдаемым объектом, распространяются в пространстве, порождая периодические изменения электрического и магнитного поля. Параболическая антенна собирает упавшие на нее радиоволны в одной точке — фокусе. Когда через одну точку проходит несколько электромагнитных волн, они интерферируют, то есть их поля складываются. Если волны приходят в фазе — они усиливают друг друга, в противофазе — ослабляют, вплоть до полного нуля. Особенность параболического зеркала как раз в том, что все волны от одного источника приходят в фокус в одной фазе и усиливают друг друга максимально возможным образом! На этой идее основано функционирование всех зеркальных телескопов.
В фокусе возникает яркое пятно, и здесь же обычно помещают приемник, который замеряет суммарную интенсивность излучения уловленного в пределах диаграммы направленности телескопа. В отличие от оптической астрономии, радиотелескоп не может сделать фотографию участка неба. В каждый момент он фиксирует излучение, приходящее только с одного направления. Грубо говоря, радиотелескоп работает как однопиксельный фотоаппарат. Для построения изображения приходится сканировать радиоисточник точка за точкой. (Впрочем, строящийся в Мексике миллиметровый радиотелескоп имеет в фокусе матрицу радиометров и «однопиксельным» уже не является.)
Командная игра
Однако можно поступить и по-другому. Вместо того чтобы сводить все лучи в одну точку, мы можем измерить и записать колебания электрического поля, порождаемые каждым из них на поверхности зеркала (или в другой точке, через которую проходит тот же луч), а затем «сложить» эти записи в компьютерном устройстве обработки, учтя фазовый сдвиг, соответствующий расстоянию, которое каждой из волн оставалось пройти до воображаемого фокуса антенны. Прибор, действующий по этому принципу, называется интерферометром, в нашем случае — радиоинтерферометром.
Интерферометры избавляют от необходимости строить огромные цельные антенны. Вместо этого можно расположить рядом друг с другом десятки, сотни и даже тысячи антенн и объединять принятые ими сигналы. Такие телескопы называются синфазными решетками. Однако проблему «зоркости» они все же не решают — для этого нужно сделать еще один шаг.
Как вы помните, с ростом размера радиотелескопа его чувствительность растет гораздо быстрее, чем разрешающая способность. Поэтому мы быстро оказываемся в ситуации, когда мощности регистрируемого сигнала более чем достаточно, а углового разрешения катастрофически не хватает. И тогда возникает вопрос: «Зачем нам сплошная решетка антенн? Нельзя ли ее проредить?» Оказалось, что можно! Эта идея получила название «синтеза апертуры», поскольку из нескольких отдельных независимых антенн, размещенных на большой площади, «синтезируется» зеркало гораздо большего диаметра. Разрешение такого «синтетического» инструмента определяется не диаметром отдельных антенн, а расстоянием между ними — базой радиоинтерферометра. Конечно, антенн должно быть по крайней мере три, причем их не следует располагать вдоль одной прямой. В противном случае разрешение радиоинтерферометра получится крайне неоднородным. Высоким оно окажется только в направлении, вдоль которого разнесены антенны. В поперечном же направлении разрешение по-прежнему будет определяться размером отдельных антенн.
По этому пути радиоастрономия стала развиваться еще в 1970-х годах. За это время был создан ряд крупных многоантенных интерферометров. У некоторых из них антенны неподвижны, у других могут перемещаться по поверхности земли, чтобы проводить наблюдения в разных «конфигурациях». Такие интерферометры строят «синтезированные» карты радиоисточников с гораздо более высоким разрешением, чем одиночные радиотелескопы: на сантиметровых волнах оно достигает 1 угловой секунды, а это уже сравнимо с разрешением оптических телескопов при наблюдении сквозь атмосферу Земли.