Добавить в цитаты Настройки чтения

Страница 11 из 19



В 1919 году две команды ученых подтвердили предсказание Эйнштейна, что свет далекой звезды будет искривляться, проходя вблизи Солнца. Таким образом, будет казаться, что звезда несколько изменила свое положение в пространстве, притягиваемая Солнцем. Это происходит потому, что Солнце искривляет пространство-время, окружающее его.

Таким образом, гравитация не «притягивает». Это пространствозвездного света, проходящего вблизи Солнца. Величину искривления звездного света можно было точно подсчитать, подобно тому как можно вычислить, насколько стекло искривляет свет. Но поскольку днем сияние Солнца скрывает все звезды, для проведения решающего эксперимента ученым пришлось ждать наступления солнечного затмения.

Группа, возглавляемая британским астрофизиком Артуром Эддиштоном, отправилась на остров Принсипи в Гвинейском заливе (у побережья Западной Африки), чтобы запечатлеть искривление света звезд вокруг Солнца во время будущего солнечного затмения. Другая команда под руководством Эндрю Кроммелина отправилась в деревню Собраль в Северной Бразилии. Собранные ими данные свидетельствовали, что средняя величина отклонения звездного света равняется 1,79 секунды дуги, что вполне соотносилось с предсказанной Эйнштейном 1,74 дуговой секунды (неточность объяснялась погрешностью измерений в ходе эксперимента). Иными словами, сеет действительно искривлялся вблизи Солнца. Позднее Эддингтон заявил, что проверка теории Эйнштейна стала одним из величайших моментов его жизни.

б ноября 1919 года на совместном заседании Королевского общества и Королевского астрономического общества в Лондоне нобелевский лауреат и президент Королевского общества Дж. Дж. Томсон торжественно объявил, что это «одно из величайших достижений в истории человеческой мысли. Это открытие не отдаленного острова, а целого континента новых научных идей. Это величайшее открытие в области гравитации с тех пор, как Ньютон сформулировал свои законы».

(По легенде, позднее некий репортер спросил Эддингтона: «Ходят слухи, что во всем мире лишь трое понимают теорию Эйнштейна. Вы, должно быть, один из них». Эддингтон стоял, ни говоря ни слова, и репортер добавил: «Не скромничайте, Эддингтон». Эддингтон пожал плечами и ответил: «Я вовсе не скромничаю. Я просто задумался, кто же может быть третьим».)

На следующий день лондонская «Тайме» вышла с сенсационным заголовком: «Научная революция — Новая теория Вселенной — Идеи Ньютона низвергнуты». Этот заголовок определил момент, когда Эйнштейн стал фигурой мирового значения, посланцем звезд.

Заявление было настолько ошеломляющим, а отход Эйнштейна от идей Ньютона настолько радикален, что в обществе возникла негативная реакция — даже выдающиеся физики и астрономы осудили эту теорию. В Колумбийском университете Чарльз Лейн Пуэр, преподаватель астрономии, возглавил кампанию по критике теории относительности. Он объявил: «Я чувствую себя так, будто прогулялся с Алисой по стране чудес и побывал на чаепитии у Безумного Шляпника».

Причина, по которой теория относительности противоречит здравому смыслу, заключается не в том, что теория относительности неверна, а в том, что наш здравый смысл не в состоянии представить реальность. Мы — странноватое произведение природы. Мы заселяем необычный объект недвижимости, где температура, плотность и скорости довольно умеренны. Однако в «настоящей Вселенной» температуры могут быть невероятно высокими в центре звезды или чрезвычайно низкими в открытом космосе, а субатомные частицы проносятся в космическом пространстве со скоростью, близкой к скорости света. Другими словами, наш здравый смысл сформировался в крайне необычной темной части Вселенной, на Земле, а потому неудивительно, что наш рассудок не может постичь истинные размеры Вселенной. Проблема не в теории относительности, а в нашем убеждении, что наш рассудок в состоянии объяснить реальность.

Хотя теория Эйнштейна успешно объясняла такие астрономические явления, как искривление звездного света вокруг Солнца и легкое смещение орбиты Меркурия, все же космологические прогнозы были не совсем ясны. Положение вещей в значительной степени прояснил русский физик Александр Фридман, открывший самые общие и реалистичные решения уравнений Эйнштейна. И в наши дни эти решения изучаются в курсе общей теории относительности. (Он открыл их в 1922 году, умер через три года, и о его работе вспомнили лишь спустя много лет.)

Теория Эйнштейна в общем случае описывается рядом чрезвычайно сложных уравнений, для решения которых зачастую необходим компьютер. Однако Фридман предположил, что Вселенная динамична, а затем привел два упрощающих допущения (называемые «космологическим принципом»): Вселенная изотропна (она выглядит одинаково вне зависимости от того, в каком направлении мы смотрим из данной точки) и гомогенна (она однородна, в какой бы точке Вселенной мы ни находились).



Если применить эти упрощающие допущения, видно, что уравнения обретают решения. (По сути, и решение Эйнштейна, и решение де Ситтера представляли собой лишь частные случаи более общего решения Фридмана.) Примечательно, что его решения зависели лишь от трех параметров:

1. Н, определяющая скорость расширения Вселенной (сегодня ее называют постоянной Хаббла в честь астронома, который действительно измерил расширение Вселенной).

2. Ω (омега), которая определяет среднюю плотность материи во Вселенной.

3. λ (лямбда), энергия пустого космоса, или темная энергия.

Многие космологи всю свою профессиональную жизнь провели в попытках определить точное значение этих трех величин. Неуловимое взаимодействие между этими тремя постоянными определяет будущее развитие нашей Вселенной. Например, поскольку гравитация выражается силами притяжения, то плотность Вселенной О) действует в качестве некоего тормоза, замедляющего расширение Вселенной. Представьте, что вы подбросили камень. В обычных условиях гравитация достаточно велика, чтобы изменить движение камня, который падает обратно на Землю. Однако если подбросить камень с достаточной силой, то он преодолеет действие гравитации и навсегда вырвется в открытый космос. Подобно камню, Вселенная первоначально расширилась в результате Большого Взрыва, но материя, V), действует на расширение Вселенной как тормоз, точно также, как земная гравитация воздействует в качестве тормоза на подброшенный камень.

Теперь допустим, что X, энергия пустого космоса, равна нулю. Пусть Ω — плотность Вселенной, разделенная на критическую плотность. (Критическая плотность Вселенной равна приблизительно, 10 атомам водорода на кубический метр. Она в среднем соответствует одному атому водорода в объеме трех баскетбольных мячей — настолько пустынна Вселенная.)

Ученые считают, что если величина СО меньше единицы, то во Вселенной недостаточно материи, чтобы обратить вспять первоначальное расширение, вызванное Большим Взрывом. (Подобно примеру с подброшенным камнем: если масса Земли недостаточно велика, то камень преодолеет земную гравитацию и улетит прочь.) В результате Вселенная будетрасширяться вечно, погружаясь вледеня-щий холод — температуры ее приблизятся к абсолютному нулю. (Это принцип работы холодильника или кондиционера. Расширяясь, газ охлаждается. Например, газ, циркулирующий в трубке вашего кондиционера, расширяется, охлаждая трубку и вашу комнату.)

Если величина СО больше 1, то во Вселенной достаточно материи и гравитации, чтобы в конце концов изменить направление космического расширения. В результате расширение Вселенной прекратится, а затем она начнет сжиматься. (Так же как в случае с подброшенным камнем: если масса Земли достаточно велика, то камень в конце концов достигнет наивысшей точки, а затем снова упадет на Землю.) Когда звезды и галактики устремятся навстречу друг другу, температуры начнут расти. (Каждый, кто хоть раз накачивал велосипедную шину, знает, что при сжатии газ нагревается.