Страница 8 из 16
В физических экспериментах можно изучать различные типы взаимодействий непосредственно в аспекте декогеренции. Это, например, делалось в экспериментах А.
Цайлингера
Nature
«Декогеренция тепловым излучением — общий механизм, который относится ко всем макроскопическим телам» ( Выделено мной.
По большому счету, все взаимодействия являются «эффектом декогеренции». Более того, согласно теории декогеренции, весь классический мир — это «эффект декогеренции». Данный момент подчеркивается, например, в самом названии книги по теории декогеренции: E.
Joos
Zeh
Giulini
Kupsch
Stamatescu
Decoherence
Nature
На сайте первого автора этой книги — E. Joos-а http://www.
decoherence
«Декогеренция…
— объясняет,
почему
— объясняет, почему некоторые объекты кажутсянам локализованными в пространстве;
— объясняет, почему появились ранее противоречивые уровни описания в физике (классический и квантовый).
— Никаких дополнительных классических концепций не требуется для
самодостаточного
— Не существует никаких частиц.
— Не существует никакого времени на фундаментальном уровне.
— Существует всего лишь ОДИН основной каркас для всех физических теорий: квантовая теория».
Все эти выводы сделаны не на пустом месте. Они отражают и обобщают результаты многолетних научных исследований тысяч и тысяч ученых, подтвержденные многочисленными экспериментами. В последнее время в научных журналах ежегодно публикуется огромное количество экспериментальных и теоретических статей по декогеренции и квантовой запутанности. Подчеркну, что речь идет о стандартной квантовой теории, а не о различных новомодных «интерпретациях» квантовой механики. Теория декогеренции, квантовая теория информации, теория запутанных (несепарабельных) состояний — все это прикладные разделы стандартнойквантовой теории, и на их основе разрабатываются технические устройства, основным рабочим ресурсом которых являются запутанные состояния.
Процессы декогеренции, наличие квантовой запутанности, возможность целенаправленно ее изменять — все это факты, которые сегодня нельзя игнорировать. Все это уже работает в технических устройствах.
Таким образом, во многом благодаря практическим нуждам, важнейшие фундаментальные физические процессы, происходящие в реальности, которые наука раньше не рассматривала, вошли в сферу внимания научного сообщества и стали объектом тщательного (как теоретического, так и экспериментального) исследования. Пришло понимание того, что мера квантовой запутанности системы, ее динамика и физические процессы, ведущие к усилению или уменьшению квантовой запутанности, — это основополагающиехарактеристики системы. А фундаментальность новых (для науки) физических процессов обусловлена тем, что они являются неотъемлемым свойством любогоэлемента реальности.
Ориентируясь на потребности общества в новых перспективных технологиях, наука была вынуждена сделать психологически трудный для нее шаг. Ей пришлось перейти от привычной полуклассической копенгагенской интерпретации квантовой механики, подразумевающей обязательное наличие классического наблюдателя (измерительного прибора), к чисто квантовому подходу, в котором уже не осталось места классическому «пережитку». И это был поистине революционный шаг.
В результате квантовый подход к описанию окружающей реальности стал
самодостаточной
Другое дело, что при осмыслении квантовой запутанности и процессов декогеренции, при попытке увязать их с нашим мировоззрением и пониманием окружающей реальности возникает множество вопросов. Тут может быть очень широкий диапазон различных мнений и точек зрения.
Таким образом, от теоретических основ квантового компьютера мы постепенно подошли к фундаментальным вопросам естествознания, к тем существенным изменениям в научной картине мира, которые следуют из последних достижений современной теоретической физики.
1.4. Нелокальный источник реальности
Для начала давайте сформулируем основной вопрос, который мы хотим прояснить. Как известно, правильно поставленный вопрос — более половины ответа. Попробуем спросить: «Действительно ли окружающий нас мир состоит из обособленных твердых объектов?»Действительно ли мир ограничивается материей и различными физическими полями, которые мы можем воспринимать непосредственно или с помощью классических приборов, и кроме этого ничего не существует? Или все, что мы видим вокруг себя, — лишь незначительная часть более сложной совокупной реальности? На первый взгляд, вопрос может показаться абстрактным, «
нефизичным
Практически каждый из нас что-то слышал о волнах де Бройля, о дуализме волна-частица. Тот, кто знаком с квантовой теорией, может вспомнить, что поля и частицы — это не разные объекты, а разные способы описанияодного и того же объекта. Для микромира давно решен вопрос и о том, что мы будем наблюдать в эксперименте — волну или частицу. Решение это очень поучительное. Оказывается, все зависит от наблюдателя. Если он захочет увидеть исследуемый объект в виде частицы, то возьмет нужный измерительный прибор — и увидит ее вполне твердой «на ощупь», а пожелает увидеть распределенным в пространстве (волну), возьмет другой прибор, и вся твердость куда-то
исчезнет (ча
Квантовая механика первой поставила под сомнение, казалось бы, очевидную предметность нашего мира и осознала, что немаловажная роль в процессе «
опредмечивания
18
Бройль Л. де. Революция в физике (Новая физика и кванты). М.:
Атомиздат
19
Гейзенберг В. Физика и философия. М.: Наука, 1989.