Добавить в цитаты Настройки чтения

Страница 20 из 48

Рис. 8.4. Скалярное поле скатывается со склона "безверхого" энергетического холма.

Еще через несколько лет Линде изучил влияние квантовых флуктуаций на скалярное поле в данном сценарии. Неожиданно оказалось, что они тоже могут приводить к вечной инфляции, несмотря даже на то, что у энергетического холма нет плоской вершины.

Ключевое наблюдение Линде заключалось в том, что на больших высотах квантовые флуктуации становятся сильнее и могут толкать поле вверх против сил, тянущих его вниз по склону. Так что, если поле стартует высоко, оно не обращает большого внимания на склон и совершает случайные блуждания, как если бы находилось на вершине холма. Когда блуждания заносят его в низины энергетического ландшафта квантовые флуктуации слабее, поле начинает упорядоченно катиться вниз к состоянию истинного вакуума. Чтобы это случилось, требуется намного больше времени, чем на инфляционное удвоение, так что расширяющиеся области размножаются быстрее, чем распадаются, что опять же приводит к вечной инфляции.

Здесь я должен остановиться и прояснить терминологическое недоразумение, связанное с данной темой. Вечную инфляцию часто путают с хаотической, хотя это совсем разные вещи. Название "хаотическая" указывает на случайность начального состояния и не имеет никакого отношения к вечному характеру инфляции. Линде показал, что хаотическая инфляция также может быть вечной, но этим связь между теориями исчерпывается. Для ясности я в дальнейшем ограничусь обсуждением первоначальной модели инфляции с приплюснутым энергетическим холмом. Вечная инфляция на безверхом холме выглядит похожим образом.

Статья Линде о вечной инфляции вызвала не больше энтузиазма, чем моя, опубликованная тремя годами раньше. [50]Однако его реакция была иной. Он не сдавал позиций, продолжал исследования по данному направлению и неоднократно выступал с докладами о своих результатах. Тем не менее физическое сообщество не поддавалось его нажиму. Понадобилось почти двадцать лет, чтобы удача повернулась лицом к вечной инфляции.

Глава 9

Говорящие небеса

Когда в 1980 году Алан Гут предложил теорию инфляции, это была не более чем спекулятивная гипотеза. Но к концу 1990-х она уже была близка к тому, чтобы стать краеугольным камнем современной космологии. Появившиеся новые наблюдения подтвердили предсказания теории, причем весьма неожиданным способом.

Возвращение космологической постоянной

Самое главное предсказание инфляции состоит в том, что наблюдаемая область Вселенной должна быть плоской, то есть иметь евклидову геометрию. Вселенная в целом вполне может быть сферической или иметь более сложную форму, но наш горизонт охватывает лишь крошечную ее часть, и поэтому мы не можем отличить ее геометрию от плоской. Как уже говорилось в главе 4, это утверждение эквивалентно тому, что средняя плотность Вселенной должна быть с очень высокой точностью равна критической.

В период появления теории инфляции астрономы относились к ее предсказаниям весьма скептически. Обычное вещество, состоящее из протонов, нейтронов и электронов, обеспечивает лишь несколько процентов от критической плотности. Существует также намного большее количество так называемой темной материи, состоящей из каких-то неизвестных частиц. В соответствии с ее названием темную материю нельзя наблюдать непосредственно, но ее присутствие проявляется гравитационным притяжением, действующим на видимые объекты. Наблюдения за движением звезд и галактик говорят о том, что масса темной материи примерно в десять раз больше массы обычной. И все-таки, даже если сложить оба этих вида массы, во Вселенной набирается лишь около 30процентов критической плотности, до нужного значения не хватает еще 70процентов.

Таковы были представления до 1998 года, когда две независимые исследовательские группы объявили о поразительном открытии. [51]Они измерили яркость взрывов сверхновых в далеких галактиках и использовали эти данные для уточнения истории космологического расширения. [52]К своему огромному удивлению, они обнаружили, что вместо замедления под действием гравитации скорость расширения в действительности возрастает. Это открытие говорило о том, что Вселенная заполнена некой гравитационно отталкивающей субстанцией. Простейшая возможность состоит в том, что истинный вакуум, в котором мы обитаем, имеет ненулевую плотность массы. [53]Как мы знаем, вакуум является гравитационно отталкивающим, и если его плотность превышает половину плотности массы вещества, суммарным результатом будет отталкивание. 

Плотность массы истинного вакуума — это то, что Эйнштейн называл космологической постоянной, идея, которую он сам объявил своей величайшей ошибкой. Она была похоронена почти на 70лет, но сегодня, похоже, не выглядит такой уж неудачной. Как мы увидим далее, неожиданное возвращение космологической постоянной привело к глубокому кризису в физике элементарных частиц. Однако для теории инфляции это стало чрезвычайно благоприятным поворотом событий. Плотность массы вакуума, оцененная по величине космологического ускорения, составляет около 70процентов критической плотности — в точности столько, сколько требуется, чтобы сделать Вселенную плоской!

Этот вывод был позднее подтвержден наблюдениями космического микроволнового излучения. Вместо того чтобы полагаться на фридмановскую связь между геометрией Вселенной и ее плотностью, микроволновые наблюдения позволяют напрямую определить геометрию пространства — по сути, путем измерения суммы углов огромного узкого треугольника одна вершина которого находится на Земле, а две другие — в точках испускания микроволн, приходящих к нам от двух близких точек на небе. (Длинные стороны этих треугольников имеют сегодня протяженность около 40миллиардов световых лет.) В плоском пространстве, как известно еще со школьных уроков геометрии, сумма углов должна составлять 180 градусов. Большее значение суммы трех углов будет указывать на замкнутую Вселенную со сферической геометрией (рис. 9.1), а меньшее — на открытую с седлообразной. Микроволновые наблюдения показывают, что в действительности сумма углов очень близка к значению, которое соответствует плоскому пространству. Эти результаты можно выразить иначе, используя фридмановское соотношение между геометрией и плотностью. Самые последние измерения в таком случае указывают на то, что плотность Вселенной равна критической с точностью не хуже 2 процентов — впечатляющий успех инфляционной космологии.





Рис. 9.1. В сферической вселенной сумма углов треугольника превышает 180градусов. На этом рисунке треугольник имеет 3прямых угла, что в сумме дает 270градусов.

Образы пылающего прошлого

Другим триумфом инфляции было объяснение небольших возмущений плотности, едва заметной ряби, которая позднее превратилась в галактики. Теория инфляции дала четкое предсказание: величина возмущений должна быть примерно одинаковой на всех астрофизических масштабах длины — от характерных межзвездных расстояний (в несколько световых лет) и вплоть до размеров всей видимой Вселенной. К началу 1990-x наблюдатели были готовы проверить это предсказание.

Как уже говорилось в главе 4, первичная рябь оставляет отпечаток в фоновом космическом излучении. Это послесвечение Большого взрыва было испущено 13миллиардов лет назад и сейчас приходит к нам со всех направлений на небе. С самого открытия этого излучения в середине 1960-х годов космологи догадывались, что в нем скрыт образ ранней Вселенной. Однако первичные неоднородности были столь малы — всего одна стотысячная от средней интенсивности, — что долгие годы оставались за пределами точности измерений, и наблюдался лишь идеально однородный фон. Прорыв случился в 1992 году, когда был запущен спутник СОВЕ (Cosmic Background Explorer, "исследователь космического фона"). Он построил полную карту неба, измерив излучение, приходящее со всех направлений, и впервые смог различить едва заметные вариации его интенсивности.

50

A.D. Linde, "Eternally existing self-reproducing chaotic inflationary universe" ("Вечно существующая самовоспроизводящаяся хаотическая инфляционная вселенная"). Physics Letters, vol. В175, p. 395 (1986). Термин "вечная инфляция" был введен Линде в этой статье.

51

Ускоренное расширение Вселенной было открыто Группой по сверхновым с большими красными смещениями (High-Z Supernova Search Team) под руководством гарвардского астронома Роберта Киршнера (Robert Kirshner) и Брайана Шмидта (Brian Schmidt) из обсерватории Сайдинг Спрингс в Австралии, а также Проектом по сверхновым в космологии (Supernova Cosmology Project), возглавляемым Солом Перлмуттером (Saul Perlmutter). Из первых рук об этом открытии можно прочесть в остроумной книге Роберта Киршнера "Экстравагантная Вселенная: взрывающиеся звезды, темная энергия и ускоряющийся космос" ( The Extravagant Universe: Exploding Stars, Dark Energy, and the Accelerating Cosmos, Princeton University Press, Princeton, 2004).

52

Расстояние до сверхновой, которое определяется по ее видимому с Земли блеску, говорит о том, как долго свет от нее шел к нам, а значит, и о том, когда случился взрыв. Покраснение света (доплеровское смещение) можно использовать для оценки скорости космологического расширения в то время. Подробнее об этом см. главу 14.

53

В следующих главах будут упомянуты некоторые другие возможности. Многие физики склонны к агностицизму в отношении причин космологического ускорения и говорят о нем как о "темной энергии".